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A Implementation of Max-Min Neighbourhood Regret

Below we detail the implementation of the linear program in Equation (11). We
formulate the convex hull constraint w ∈ C(N) using a scalars λ1, . . . , λn ∈ [0, 1]
to write w as a convex combination of the neighboughood weights w = λ1w1 +
· · ·+ λnwn. Thus, the equality constraints are given by
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The first row ensures that w is normalized, i.e., lies inW where all its components
sum to 1. The second ensures the same for λ1, . . . , λn. The other rows ensure that
the i-th element of the vecotr w is a convex combination of the i-th component of
all neighbourhood vectors w1, . . . ,wn. In the objective function, we write P (w)
using the same convex combination as

x−
n∑

i=1

λiu(wi). (2)

Finally, we require that wi ≥ 0 and λi ≥ 0 for all i = 1, . . . , n.

B Simulation Results

In this section, we evaluate the performance of the proposed algorithm on a NP-
hard optimization problem, namely traveling salesman problem with multiple
agents.
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Fig. 1: Sampling trade-offs between min-sum and min-max tour lengths for mTSP.

Given a tour T in G = (V,E, c), we denote the cost of the tour with cost(T ).
Then the variation of the multi-traveling salesman problem is defined as follows:

Problem 1 (Multi Traveling Salesman Problem (mTSP)). Given a graph G =
(V,E, c), a set ofm robots, the weights w1, w2, and a depot d ∈ V , the objective is
to find a set of m tours, T1, . . . , Tm, starting at d such that the linear combination
of the total tour length and the maximum tour length is minimized, i.e.,

min
T1,...,Tm

w1

m∑
i=1

cost(Ti) + w2 max
i∈{1,...,m}

cost(Ti).

The two features, total tour length and maximum tour length, represent the
total energy consumption of a fleet of robots to collectively service the tasks
and the maximum time to service the tasks, respectively. Note that depending
on the user-preferences or different scenarios, one of the features become more
important. For instance, in a monitoring scenario with a set of robots, depending
on the time and the state of the observed environment, the service time is more
important than the total energy consumption of the fleet. Observe that finding
the optimal solution of the mTSP problem for given w1, w2 is computationally
expensive, therefore, changing the strategy based on the state of the environment
in an online fashion is not feasible. Using the proposed approach, we generate
set of candidate sample weights that minimize the maximum regret for any
possible scenario or user preference. Figure 1 shows the results of experiment
with 15 vertices to observe and 10 robots. The left figure illustrates the maximum
regret using the samples with the proposed method and the uniform sampling on
the weight set. Note that the maximum regret of the proposed method almost
converges to 0 with 3 samples, while uniform sampling needs 10 samples to
achieve the same. Overall the difference between the methods is larger on the
maximum relative regret measure.


