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Appendix of WAFR 2022 Paper on

Sample-efficient Safe Learning for Online Nonlinear
Control with Control Barrier Functions

*Equation indexes from (1)-(19) follow the original indexes appearing in the
paper submission and new equations start from (20) in this appendix.

A Remark 1

Remark 1. In general for nonlinear function hs(·) and nonlinear dynamical
system, the constraint in Eq. 4 is nonlinear with respect to the control u. When
both f̂ and d are affine control functions in the form of G1(x) + G2(x)u, the
constraint in Eq. 4 becomes linear with respect to u.

Proof. Here we discuss how to derive the control constraints with nonlinear
control barrier function hs(·) from Eq. 6 that fulfills Eq. 4 (and hence fulfills
Proposition 1). Recall the constraint Eq. 6 as follows (we have uh = π(xh)).

hs
(
f̂(xh, uh) + d(xh, uh)

)
− Lσ̄

√
2n ln

(
Hn

δs

)
− hs(xh)

≥ −ηhs(xh)

(20)

Given that both the known nominal discrete dynamics f̂ and the unknown part
d are affine in control as f̂(xh, uh) = F̂ (xh) + Ĝ(xh)uh and d(xh, uh) = g1(xh) +
g2(xh)uh, where F̂ , Ĝ, g1, g2 are assumed locally Lipschitz continuous. Then with
the continuously differentiable function hs(·), we have hs

(
f̂(xh, uh) + d(xh, uh)

)
−

hs(xh) = L∆
F̂+g1

hs(xh) + L∆
Ĝ+g2

hs(xh)uh and hence Eq.20 can be re-written as

L∆
F̂+g1

hs(xh) + L∆
Ĝ+g2

hs(xh)uh ≥ −ηhs(xh) + Lσ̄

√
2n ln

(
Hn

δs

)
(21)

where L∆
F̂+g1

hs(xh) and L∆
Ĝ+g2

hs(xh) are discrete-time Lie-derivatives of hs(xh)

obtained through Taylor’s theorem along F̂ (xh) + g1(xh) and Ĝ(xh) + g2(xh)
respectively. To that end, the condition in Eq. 4 and Eq. 6 hold by enforcing the
linear control constraint Eq. 21 on uh. Thus, we conclude the proof.

B Assumption 2

Assumption 2. (Calibrated model) WithW 0, V0 from the initial data (xi, ui, x
′
i)
N
i=1

and ε, δ ∈ (0, 1), we can build the initial confidence ball describing the uncertain
region of the linear mapping W ? with probability at least 1− δ as follows:

Ball0 =
{
W :

∥∥∥(W −W 0)V
1/2
0

∥∥∥
2
≤ β, ‖W‖2 ≤ ‖W ?‖2

}
(10)



18 W. Luo et al.

where β is a hyper-parameter describing an appropriate confidence radius. Then
for all W̃ ∈ Ball0, we have:

∀x, u ∈ X × U :
∥∥∥(W̃ −W ?

)
φ(x, u)

∥∥∥
2
≤ O (ε) .

We introduce the following Lemma 1 to provide a practical example on how
to derive such calibrated model in Eq. 10.

Lemma 1. [Pre-train guarantee of calibrated model from pre-collected data]
Fix a pair (ε, δ) with ε, δ ∈ (0, 1). Denote Φ ∈ Rr×N where each column
of Φ corresponds to the feature vector φ(x, u) for (x, u) ∈ X × U . Assume
span(Φ) = r. Via John’s theorem, denote B ⊂ X × U as the core set of
John’s ellipsoid, and µ as the corresponding sampling distribution with sup-
port on B defined by µ = arg maxρ∈∆(X×U) ln det

(
Ex,u∼ρφ(x, u)φ(x, u)>

)
from

John’s ellipsoid. Then draw N triples D = {xi, ui, x′i}Ni=1 as pre-collected of-
fline dataset with xi, ui ∼ µ, x′i ∼ P (·|xi, ui), and compute the initialization
W 0 =

∑N
i=1(x′i−f̂(xi, ui))φ(xi, ui)

>V −1
0 with V0 =

∑N
i=1 φ(xi, ui)φ(xi, ui)

>+λI.
Then with probability at least 1− δ, we have:

∀x, u ∈ X × U ,
∥∥(W 0 −W ?)φ(x, u)

∥∥
2
≤ O(ε),

with polynomially number of samples, i.e., N scaling polynomially with respect to
the relevant parameters:

N = O
(rC2

1λ+ rσ̄2n+ ln(1/δ) + r2σ̄2

ε2
+
C2

1r
2 ln(r/δ)

ε4

)
After deriving W 0, V0 from the initial data (xi, ui, x

′
i)
N
i=1, we can build the initial

confidence ball describing the uncertain region of W ? as follows:

Ball0 =
{
W :

∥∥∥(W −W 0)V
1/2
0

∥∥∥
2
≤ β, ‖W‖2 ≤ ‖W ?‖2

}
(10)

where β is the confidence radius as β :=
√
λC1+σ̄

√
8n ln(5) + 8r ln (1 +N/λ) + 8 ln(1/δ).

For all W̃ ∈ Ball0, we also have

∀x, u ∈ X × U :
∥∥∥(W̃ −W ?

)
φ(x, u)

∥∥∥
2
≤ O (ε) .

Proof. First note that we can compute the exact difference between the least
square solution W 0 and W ?:

W 0 −W ? = −λW ? (V0)
−1

+

N∑
i=1

εiφ(xi, ui)
>V −1

0 .

Continue, we have∥∥∥(W 0 −W ?)V
1/2
0

∥∥∥
2
≤
∥∥∥λW ?V

−1/2
0

∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

εiφ(xi, ui)
>V
−1/2
0

∥∥∥∥∥
2

≤
√
λC1 + σ̄

√
8n ln(5) + 8 ln (det(1 + V0/λ)) + 8 ln(1/δ)

≤
√
λC1 + σ̄

√
8n ln(5) + 8r ln (1 +N/λ) + 8 ln(1/δ)︸ ︷︷ ︸

:=β
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where C1 denotes the standard assumption of bounded norm ‖W ?‖2 ≤ C1.
Denote Σ = Ex,u∼µφ(x, u)φ(x, u)>. Via matrix Bernstein’s inequality, we get
that with probability at least 1− δ, for any x with ‖x‖2 ≤ 1,∣∣∣∣∣x>

(
N∑
i=1

φ(xi, ui)φ(xi, ui)
>/N −Σ

)
x

∣∣∣∣∣ ≤ 2 ln(8r/δ)

3N
+

√
2 ln(8r/δ)

N
:= ε.

Thus we will have that for any x with ‖x‖2 ≤ 1 :

x>(W 0 −W ?)V0(W 0 −W ?)>x ≥ x>(W 0 −W ?)(ΣN + λ)(W 0 −W ?)>x− 2εNC1,

which means that:∥∥∥(W 0 −W ?)(Σ + λ/N)1/2
∥∥∥2

2
≤β2/N + 2C1ε

≤λC
2
1

N
+
σ̄2(n+ r ln(1 +N/λ+ ln(1/δ))

N
+

2C1

√
ln(8r/δ)√
N

For any x, u, we have:∣∣(W 0 −W ?)φ(x, u)
∣∣2 ≤ ∥∥∥(W 0 −W ?)(Σ + λ/N)1/2

∥∥∥2

2

∥∥∥(Σ + λ/N)−1/2φ(x, u)
∥∥∥2

2

Note that for any x, we have:

x>Σ−1x ≥ x>(Σ + λ/N)−1x.

Using the John’s theorem, we get that:

φ(x, u)>(Σ + λ/N)−1φ(x, u) ≤ φ(x, u)>Σ−1φ(x, u) ≤ r

Hence, we have:

∣∣(W 0 −W ?)φ(x, u)
∣∣ ≤√(β2

N
+ 2C1ε

)
r

≤
√
rλC2

1

N
+

√
rσ̄2(n+ r ln(1 +N/λ+ ln(1/δ))

N
+

√
2C1r

√
ln(8r/δ)√
N

Now setting N = O
(
rC2

1λ+rσ̄2n+ln(1/δ)+r2σ̄2

ε2 +
C2

1r
2 ln(r/δ)
ε4

)
, we ensure that:∣∣(W 0 −W ?)φ(x, u)

∣∣ ≤ O(ε).

Then starting from triangle inequality, we get:∣∣∣(W̃ −W ?)φ(x, u)
∣∣∣ ≤ ∣∣∣(W̃ −W 0)φ(x, u)

∣∣∣+
∣∣(W 0 −W ?)φ(x, u)

∣∣
≤
∥∥∥(W̃ −W 0)(Σ + λ/N)1/2

∥∥∥
2

∥∥∥(Σ + λ/N)−1/2φ(x, u)
∥∥∥

2

+
∥∥∥(W 0 −W ?)(Σ + λ/N)1/2

∥∥∥
2

∥∥∥(Σ + λ/N)−1/2φ(x, u)
∥∥∥

2

≤
∥∥∥(W̃ −W 0)(Σ + λ/N)1/2

∥∥∥
2

√
r +

∥∥∥(W 0 −W ?)(Σ + λ/N)1/2
∥∥∥

2

√
r
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We also know that for any two W1 and W0 with ‖Wj‖2 ≤ C1 with j ∈ {1, 2}, we
have:

x>(W1 −W2)V0(W1 −W2)>x ≥ x>(W1 −W2)(ΣN + λ)(W1 −W2)>x− 2εNC1,

which means that:∥∥∥(W 0 − W̃ )(Σ + λ/N)1/2
∥∥∥2

2
≤ β2/N + 2C1ε,∥∥∥(W 0 −W ?)(Σ + λ/N)1/2

∥∥∥
2
≤ β2/N + 2C1ε.

This implies that: ∣∣∣(W̃ −W ?)φ(x, u)
∣∣∣ ≤ 2

√
r
√
β2/N + 2C1ε.

Now recall the setup of N , β, and ε, we conclude the proof.

As the typical assumption similar to [6], Assumption 2 represents an initially
calibrated model W 0, whose initial confidence region Ball0 in Eq. 10 could yield
approximately good prediction for all W̃ ∈ Ball0.

C Proof of Theorem 1

Theorem 1 (Policy for Approximate High-Probability Safety Guarantee with
Learned Dynamics). Under Assumption 2, consider any W̃ ∈ Ball0, and define
any policy πs : X 7→ U that satisfies the CBF constraint parameterized by W̃ , i.e.,

∀x ∈ X : πs(x) ∈ Ux :=

{
u : hs

(
f̂(x, u) + W̃φ(x, u)

)
−

Lσ̄

√
2n ln

(
Hn

δs

)
≥ (1− η)hs(x)

}
(11)

Then with probability at least 1− δs, starting at any safe initial state hs(x0) ≥ 0,
πs generates a safe trajectory {x0, u0, . . . , xH−1, uH−1}, such that for all time
steps h ∈ [H], hs(xh) ≥ −O(Lεη ), where L is the Lipschitz constant of hs(·) under
bounded x ∈ X .

Proof. Starting from Assumption 2, we know that for any W̃ ∈ Ball0, we have:∥∥∥(W̃ −W ?
)
φ(x, u)

∥∥∥
2
≤ O(ε),∀x, u ∈ X × U .

From Eq. 11 the policy selects action uh for all time steps h ∈ [H] such that:

hs(f̂(xh, uh) + W̃φ(xh, uh))− Lσ̄

√
2n ln

(
Hn

δs

)
≥ (1− η)hs(xh)
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This means that for W ?, we have:

hs(xh+1) = hs(f̂(xh, uh) +W ?φ(xh, uh) + εh)

≥ hs(f̂(xh, uh) + W̃φ(xh, uh))

− L
∥∥∥(W̃ −W ?)φ(xh, uh)

∥∥∥
2
− L‖εh‖2

≥ (1− η)hs(xh) + Lσ̄

√
2n ln

(
Hn

δs

)
− Lε− L‖εh‖2
≥ (1− η)hs(xh)− Lε
≥ (1− η)2hs(xh−1)− L (ε+ (1− η)ε)

≥ (1− η)h+1hs(x0)− L

η
ε

(22)

Using the initial condition that hs(x0) ≥ 0, we conclude the proof.

Despite the unbounded stochasticity of the dynamics, Eq. 22 with hs(xh+1) ≥
(1− η)h+1hs(x0)− L

η ε ensures that for all time steps h ∈ [H], hs(xh) is always
lower bounded with a high probability, implying the probabilistic safety guarantee
for the entire trajectory generated under πs in Eq. 11.

D Proof of Proposition 2

Proposition 2. Given the uncertainty regions W ? ∈ {W : ‖(W −W t)Σ
1/2
t ‖2 ≤

βt} (Proof of Lemma B.5 in [18]) and Ball0 (Eq. 10) with the probability of
Pr(W ? ∈ {W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt}) ≥ 1− δ and Pr(W ? ∈ Ball0) ≥ 1− δ,

then for all t we have

Pr
(
W ? ∈ Ballt := Ball0 ∩

{
W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt

})
≥ 1− 2δ (16)

where Pr(·) denotes the probability of an event.

Proof. By definition,

Pr
(
W ? /∈ {W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt}

)
≤ δ

Pr (W ? /∈ Ball0) ≤ δ
Thus, we have

Pr
(
W ? ∈ Ballt := Ball0 ∩

{
W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt

})
=1− Pr

(
W ? /∈ {W : ‖(W −W t)Σ

1/2
t ‖2 ≤ βt} OrW ? /∈ Ball0

)
≥1− 2δ

which concludes the proof.
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E Proof of Eq. 18 ⇒ Eq. 17

Here we show that for all state x ∈ X , any u ∈ U satisfying Eq. 18 ensures
u ∈ πs(x) defined in Eq. 17, thus constructing the safe policy class Π

W̃
.

Recall the definition of Π
W̃

as follows.

Π
W̃

=

{
πs ∈ Π : ∀x ∈ X , πs(x) ∈

{
u : hs

(
f̂(x, u) + W̃φ(x, u)

)
− Lσ̄

√
2n ln

(
Hn

δs

)
≥ (1− η)hs(x)

}}
(17)

Consider Eq. 18:

u ∈ U : L∆
F̂
hs(x) + L∆

Ĝ
hs(x)u− Lσ̄

√
2n ln

(
Hn

δs

)
≥ −ηhs(x) + |∆hs(x)W̃φ(x, u?)|+ |∆hs(x)W̃Lx,φ(u+ − u−)|︸ ︷︷ ︸

K(x,u?)

(18)

where L∆
F̂
hs(x) and L∆

Ĝ
hs(x) are discrete-time Lie-derivatives of hs(x) obtained

through Taylor’s theorem along F̂ (x) and Ĝ(x) respectively. Lx,φ is the local
Lipschitz constant vector for the known feature mapping φ w.r.t. u at x. ∆hs(x)
is the discrete derivative of hs and u?, u+, u− are the nominal, max and min
value of u respectively. Thus we have

K(x, u?) = |∆hs(x)W̃φ(x, u?)|+ |∆hs(x)W̃Lx,φ(u+ − u−)|

≥ |∆hs(x)W̃φ(x, u?)|+ |∆hs(x)W̃Lx,φ(u− u?)|

≥
∣∣∣∆hs(x)W̃φ(x, u?) +∆hs(x)W̃Lx,φ(u− u?)

∣∣∣
≥ −∆hs(x)W̃φ(x, u) (23)

Then with K(x, u?) ≥ −∆hs(x)W̃φ(x, u), from Eq. 18 we have

u ∈ U :L∆
F̂
hs(x) + L∆

Ĝ
hs(x)u− Lσ̄

√
2n ln

(
Hn

δs

)
≥ −ηhs(x) +K(x, u?)

≥ −ηhs(x)−∆hs(x)W̃φ(x, u) (24)
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and hence

u ∈ U :

hs(f̂(x,u)+W̃φ(x,u))−hs(x)︷ ︸︸ ︷
L∆
F̂
hs(x) + L∆

Ĝ
hs(x)u+∆hs(x)W̃φ(x, u)

− Lσ̄

√
2n ln

(
Hn

δs

)
≥ −ηhs(x)

⇒ hs
(
f̂(x, u) + W̃φ(x, u)

)
− Lσ̄

√
2n ln

(
Hn

δs

)
≥ (1− η)hs(x) (25)

As Eq. 25 is equivalent to the constraint in Eq. 17, we conclude the proof.
Note that if the ground truth dynamics d is only state-dependent as assumed

in [6, 9, 37], then Eq. 18 is also linear in control where Lx,φ = 0 and feature
mapping becomes φ(x, u?) = φ(x).

F Proof of Theorem 2

Below we first briefly summarize the theorem of LC3 regret from [18] as follows.

Theorem 3. (LC3 Regret for finite dimensional, bounded features, See Theorem
1.1 in [18]) Consider the finite dimension of φ as dφ and that φ is uniformly
bounded with ‖φ(x, u)‖2 ≤ B. The LC3 algorithm (Algorithm 1 in [18]) enjoys
the following expected regret bound:

ELC3 [RegretT ]

≤Õ
(√

dφ(dφ + dX +H)H3T · log

(
1 +

B2‖W ?‖22
σ2

)) (26)

where Õ(·) notation drops logarithmic factors in T and H.

By revisiting this result, we provide our main statement as follows.

Theorem 2. [Main Result] Set λ = σ̄2/C2
1 . Our algorithm learns a sequence of

policies π0, . . . , πT−1 in T episodes, such that in expectation, we have:

E [RegretT ] ≤ Õ
(
H
√
Hr(r + n+H)T

)
.

Also with probability at least 1 − O(δs), we have that for all t ∈ [T ], hs ∈ [H],
h(xth) ≥ −O(Lε/η).

Proof. For safety consideration, we proved that the sequence of policies learned
from our Algorithm 1 satisfying Eq. 18 (and thus Eq. 17) are all approximately safe,
i.e. hs(xth) ≥ −O(Lε/η), with probability at least 1−O(δs) for all t ∈ [T ], h ∈ [H]
(See Section E and Theorem 1).
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For the regret analysis, our proof mainly follows Theorem 3 for LC3 algorithm
and its proofs in [18]. Readers are encouraged to refer to [18] for more details.
One key assumption that allows for regret bound in Eq. 26 lies in the setting
of optimism in the face of uncertainty that computes the optimal policy from
unconstrained policy class Π

πt := arg min
π∈Π

min
W∈Ballt

Jπ(xt0; c,W ) (27)

Similarly, in our analysis, by considering the constrained policy class Π
W̃

defined
in Eq. 17 and our optimism setup in Eq. 19 analogous to Eq. 27, our regret
analysis naturally follows LC3 regret in Eq. 26 and enjoys the regret bound with
safety guarantee as follows

E [RegretT ] ≤ Õ
(
H
√
Hr(r + n+H)T

)
where Õ(·) notation drops logarithmic factors. Thus we conclude the proof of
Theorem 2.


