
Certified, Collision-Free Regions in C-Space 17

A Definition of Archimedean

In this section we formally define the Archimedean property that appears in
Theorem 1.

Definition 1. A semialgebraic set Sg = {x | gi(x) ≥ 0, i ∈ [n]} is Archimedean
if there exists N ∈ N and λi(x) ∈ Σ such that:

N −
n∑

i=1

x2
i = λ0(x) +

n∑
i=1

λi(x)gi(x)

B Practical Aspects

In this section we discuss important ways to scale Algorithm 1. In sections B.1
and B.2 we describe design choices which dramatically reduce the size of the SOS
programs used in the alternations. Next, we discuss aspects of Algorithm 1 which
can be parallelized, reducing solve time in the alternations. Finally, we describe
an extension to the original Iris algorithm [1] which can be used to rapidly
propose a very large region that is likely, but not certified, to be collision-free.
Seeding Algorithm 1 with such a region can dramatically reduce the number of
iterations required to obtain a satisfyingly large volume.

B.1 Choosing the Reference Frame

The polynomial implications upon which the programs (11) and (12) are based
require choosing a coordinate frame between each collision pair A and B. How-
ever, as the collision-free certificate between two different collision pairs can be
computed independently of each other, we are free to choose a different coordi-
nate frame to express the kinematics for each collision pair. This is important in
light of (4) and (5) that indicate that the degree of the polynomials F fAj and
F gAj are equal to two times the number of joints lying on the kinematic chain
between frame F and the frame for A. For example, the tangent-configuration
space polynomial in the variable s describing the position of the end-effector
of a 7-DOF robot is of total degree 14 when written in the coordinate frame
of the robot base. However, when written in the frame of the third link, the
polynomial describing the position of the end effector is only of total degree
(7 − 3) × 2 = 8. This observation is also used in [2] to reduce the size of the
optimization program.

The size of the semidefinite variables in (11) and (12) scale as the square of
the degree of the polynomial used to express the forward kinematics. Supposing
there are n links in the kinematics chain between A and B, then choosing the jth
link along the kinematics chain as the reference frame F leads to scaling of order
j2+(n− j)2. Choosing the reference frame in the middle of the chain minimizes

this complexity to scaling of order n2

2 and we therefore adopt this convention in
our experiments.

18 Amice, Dai, et al.

B.2 Basis Selection

The condition that a polynomial can be written as a sum of squares can be
equivalently formulated as an equality constraint between the coefficients of the
polynomial and an associated semidefinite variable known as the Gram matrix
[3]. In general, a polynomial in k variables of total degree 2d has

(
k+2d
2d

)
coeffi-

cients and requires a Gram matrix of size
(
k+d
d

)
to represent which can quickly

become prohibitively large. Fortunately, the polynomials in our programs con-
tain substantially more structure which will allow us to drastically reduce the
size of the Gram matrices.

We begin by noting from (6) that while both the numerator and denominator
of the forward kinematics are of total degree 2n, with n the number of links of
the kinematics chain between frame A and F , both polynomials are of coordinate
degree of at most two (i.e. the highest degree of si in any term is s2i). We will
refer to this basis as µ(s) which is a vector containing terms of the form

∏n
i=1 s

di
i

with di ∈ {0, 1, 2} for all n3 possible permutations of the exponents di.
Next, we recall the form of αF,Aj (aA,B, bA,B, s) from (8b) and (8c). If aA,B(s) =

aTA,Bη(s) and bA,B(s) = bTA,Bη(s) for some basis η in the variable s, then αF,Aj

and βF,Aj can be expressed as linear functions of the basis γ(s) = vect(η(s)µ(s)T)
where we use vect to indicate the flattening of the matrix outer product. Con-
cretely, if we choose to make aA,B(s) and bA,B(s) linear functions of the indeter-
minates s, then η(s) = l(s) =

[
1 s1 . . . sn

]
. Therefore αF,Aj and βF,Aj can be

expressed as linear functions of the basis

γ(s) =
[
µ(s) s1µ(s) . . . snµ(s)

]
(13)

After choosing the basis η(s), which determines the basis γ(s), the equality
constraints (9a) and (9b) constrain the necessary basis needed to express the
multiplier polynomials λ(s) and ν(s). The minimal such basis is related to an
object known in computational algebra as the Newton polytope of a polyno-
mial New(f) [4]. The exact condition is that the New(η(s)) + New(µ(s)) ⊆
New(ρ(s)) +New(l(s)) where the sum in this case is the Minkowski sum.

If we choose η(s) as the linear basis l(s), then we obtain the condition that
New(ρ(s)) = New(µ(s)) and since µ(s) is a dense, even degree basis then we
must take ρ(s) = µ(s). Choosing η(s) as the constant basis would in fact result
in the same condition, and therefore searching for separating planes which are
linear functions of the tangent-configuration space does not increase the size of
the semidefinite variables. As the complexity of (11) and (12) is dominated by the
size of these semidefinite variables, separating planes which are linear functions
changes does not substantially affect the solve time but can dramatically increase
the size of the regions which we can certify.

Remark 3. In the case of certifying that the end-effector of a 7-DOF robot will
not collide with the base using linearly parametrized hyperplanes, choosing to
express conditions (9a) and (9b) in the world frame with näıvely chosen bases
would result in semidefinite variables of size

(
7+7
7

)
= 3432. Choosing to express

the conditions according to the discussion in Section B.1 and choosing the basis
γ(s) from (13) results in semidefinite matrices of rows at most 24 = 16.

Certified, Collision-Free Regions in C-Space 19

B.3 Parallelization

While it is attractive from a theoretical standpoint to write (11) as a single, large
program it is worth noting that can in fact be viewed as K + 1 individual SOS
and SDP programs, where K is the number of collision pairs in the environment.
Indeed, certifying whether pairs (A1,A2) are collision-free for all s in the poly-
tope P can be done completely independently of the certification of another pair
(A1,A3) as neither the constraints nor the cost couple the conditions of imposed
on any pairs. Similarly, the search for the largest inscribed ellipsoid can be done
independently of the search for the separating hyperplanes.

Solving the certification problem embedded in (11) as K individual SOS
programs has several advantages. First, as written (11) has 2(m + 1)K

∑
i |Ai|

semidefinite variables of various sizes. In the example from Section 5.1 this corre-
sponds to 35,072 semidefinite variables. This can be prohibitively large to store
in memory as a single program. Additionally, solving the problems independently
enables us to determine which collision bodies cannot be certified as collision-free
and allows us to terminate our search as soon as a single pair cannot be certi-
fied. Finally, decomposing the problems into subproblems enables us to increase
computation speed by leveraging parallel processing.

We note that (12) cannot be similarly decomposed as on this step the vari-
ables cTi and d affect all of the constraints. However, this program is substantially
smaller as we have fixed 2mK

∑
i |Ai| semidefinite variables as constants and re-

placed them with 2m linear variables representing the polytope. This program
is much more amenable to being solved as a single program.

B.4 Seeding the Algorithm

It is worth noting that the alternations in Algorithm 1 must be initialized with
a polytope P0 for which (11) is feasible. In principle, the alternation proposed in
Section 4.3 can be seeded with an arbitrarily small polytope around a collision-
free seed point. This seed polytope is then allowed to grow using Algorithm 1.
However, this may require running several dozens of iterations of Algorithm 1 for
each seed point which can become prohibitive as the size of the problem grows.
It is therefore advantageous to seed with as large a region as can be initially
certified.

Here we discuss an extension of the Iris algorithm in [1] which uses nonlinear
optimization to rapidly generate large regions in C-space. These regions are
not guaranteed to be collision-free and therefore they must still be passed to
Algorithm 1 to be certified, but do provide good initial guesses. In this section,
we will assume that the reader is familiar with Iris and will only discuss the
modification required to use it to grow C-space regions. Detailed pseudocode is
available in Appendix C

Iris grows regions in a given space by alternating between two subproblems:
SeparatingHyperplanes and InscribedEllipsoid. The InscribedEllip-
soid is exactly the program described in [5, Section 8.4.2] and we do not need

20 Amice, Dai, et al.

to modify it. The subproblem SeparatingHyperplanes finds a set of hyper-
planes which separate the ellipse generated by InscribedEllipsoid from all of
the obstacles. This subproblem is solved by calling two subroutines Closest-
PointOnObstacle and TangentPlane. The former finds the closest point
on a given obstacle to the ellipse, while the latter places a plane at the point
found in ClosestPointOnObstacle that is tangent to the ellipsoid.

The original work in [1] assumes convex obstacles which enables Closest-
PointOnObstacle to be solved as a convex program and for the output of
TangentPlane to be globally separating plane between the obstacle and the
ellipsoid of the previous step. Due to the non-convexity of the C-space obsta-
cles in our problem formulation, finding the closest point on an obstacle exactly
becomes a computationally difficult problem to solve exactly [6]. Additionally,
placing a tangent plane at the nearest point will be only a locally separating
plane, not a globally separating one.

To address the former difficulty, we formulate ClosestPointOnObstacle
as a nonlinear program. Let the current ellipse be given as E = {Qu + s0 |
∥u∥2 ≤ 1} and suppose we have the constraint that s ∈ P = {s | Cs ≤ d}. Let
A and B be two collision pairs and ApA,

BpB be some point in bodies A and B
expressed in some frame attached to A and B. Also, let WXA(s) and WXB(s)
denote the rigid transforms from the reference frames A and B to the world
frame respectively. We remind the reader that this notation is drawn from [7].
The closest point on the obstacle subject to being contained in P can be found
by solving the program

min
s,ApA,BpB

(s− s0)
TQTQ(s− s0) subject to (14a)

WXA(s)ApA = WXB(s)BpB (14b)

Cs ≤ d (14c)

This program searches for the nearest configuration in the metric of the ellipse
such that two points in the collision pair come into contact. We find a locally
optimal solution (s⋆,Ap⋆A,

Bp⋆B) to the program using a fast, general-purpose
nonlinear solver such as SNOPT [8]. The tangent plane to the ellipse E at
the point s⋆ is computed by calling TangentPlane then appended to the
inequalities of P to form P ′. This routine is looped until (14) is infeasible at
which point InscribedEllipse is called again.

Once a region P = {s | Cs ≤ d} is found by Algorithm 2, it will typically
contain some minor violations of the non-collision constraint. To find an initial,
feasible polytope P0 to use in Algorithm 1, we search for a minimal uniform
contraction δ of P such that Pδ = {s | Cs ≤ d − δ ∗ 1} is collision-free. This
can be found by bisecting over the variable δ ∈ [0, δmax] and solving repeated
instances of (11).

Seeding Algorithm 1 with a P0 as above can dramatically reduce the number
of alternations required to obtain a fairly large region and is frequently faster
than seeding Algorithm 1 with an arbitrarily small polytope.

Certified, Collision-Free Regions in C-Space 21

C Supplementary Algorithms

We present a pseudocode for the algorithm presented in Appendix B.4. A mature
implementation of this algorithm can be found in Drake7.

Algorithm 2: Given an initial tangent-configuration space point s0
and a list of obstacles O, return a polytopic region P = {s | Cs ≤ d}
and inscribed ellipsoid EP = {s | Qu+ sc} which contains a substantial
portion of the free C-space (but is not guaranteed to contain no colli-
sions)

1 (C, d)← plant joint limits
2 Pi ← {s | Cs ≤ d}
3 EP0 ← InscribedEllipsoid(P0)
4 j ← number of rows of C
5 do
6 do
7 (s⋆,Ap⋆A, Bp⋆B)← FindClosestCollision(Pi, EPi)

8 (cTj+1, dj+1)← TangentHyperplane(s⋆, EPi)

9 C ← hstack(C, cTj+1)
10 d← hstack(d, dj+1)
11 Pi ← {s | Cs ≤ d}
12 j ← j + 1

13 while FindClosestCollision(Pi, EPi) is feasible;
14 EPi ← InscribedEllipsoid(Pi) i← i+ 1

15 while (vol(Ei)− vol(Ei−1)) /vol(Ei−1) ≥ tolerance;
16 return (Pi, EPi)

References

1. R. Deits and R. Tedrake, “Computing large convex regions of obstacle-free space
through semidefinite programming,” in Algorithmic foundations of robotics XI.
Springer, 2015, pp. 109–124.

2. P. Trutman, S. E. D. Mohab, D. Henrion, and T. Pajdla, “Globally optimal solution
to inverse kinematics of 7dof serial manipulator,” arXiv preprint arXiv:2007.12550,
2020.

3. P. A. Parrilo, “Sum of squares programs and polynomial inequalities,” in
SIAG/OPT Views-and-News: A Forum for the SIAM Activity Group on Optimiza-
tion, vol. 15, no. 2.

4. B. Sturmfels, “On the newton polytope of the resultant,” Journal of Algebraic Com-
binatorics, vol. 3, no. 2.

7 https://github.com/RobotLocomotion/drake/blob/

2f75971b66ca59dc2c1dee4acd78952474936a79/geometry/optimization/iris.

cc#L440

https://github.com/RobotLocomotion/drake/blob/2f75971b66ca59dc2c1dee4acd78952474936a79/geometry/optimization/iris.cc#L440
https://github.com/RobotLocomotion/drake/blob/2f75971b66ca59dc2c1dee4acd78952474936a79/geometry/optimization/iris.cc#L440
https://github.com/RobotLocomotion/drake/blob/2f75971b66ca59dc2c1dee4acd78952474936a79/geometry/optimization/iris.cc#L440
https://github.com/RobotLocomotion/drake/blob/2f75971b66ca59dc2c1dee4acd78952474936a79/geometry/optimization/iris.cc#L440

22 Amice, Dai, et al.

5. S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

6. C. Ferrier, “Computation of the distance to semi-algebraic sets,” ESAIM: Control,
Optimisation and Calculus of Variations, vol. 5.

7. R. Tedrake, Robotic Manipulation, 2021. [Online]. Available: https://manipulation.
mit.edu/pick.html#monogram

8. P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm for large-scale
constrained optimization,” SIAM review, vol. 47, no. 1.

https://manipulation.mit.edu/pick.html#monogram
https://manipulation.mit.edu/pick.html#monogram

