Supplementary Material - Information Theoretic Intent
Disambiguation via Contextual Nudges for Assistive

Shared Control

Deepak Gopinath!:3, Andrew Thompson!:3, and Brenna D. Argall®?:3

! Department of Mechanical Engineering, Northwestern University, Evanston, IL
2 Department of Computer Science, Northwestern University, Evanston, IL
3 Shirley Ryan AbilityLab, Chicago, IL

1 Tllustration of the Intuitiveness of D(s)

In this section, we provide an illustration of how
the proposed disambiguation metric matches our in-
tuitions of what the maximally disambiguating states
are for different prior beliefs over goals in a simple
environment. The simulated environment under con-
sideration is a 2D gridworld with three goal locations
in which the robot state space Q is the (z,y) coordi-
nate of each grid cell (Figure 1). The simulated teleop-
eration interface is a 1D interface with bi-directional
mode-switching capabilities.*

Since the dimensionality of the interface is lower
than the dimensionality of the robot, the control space
is partitioned into two modes: specifically, M =
{Horizontal, Vertical}, allowing for motion along x
and y dimensions respectively. The action space A
consist of A, = {move-positive, move-negative} that
consists of actions that allow positive and negative
motion along the active dimension at any given time
and A, = {switch-right, switch-left} which consists
of mode-switch actions that result in mode switches.
Note that for an ordered set M, switch right results in
a transition from mode m,; to m;; with wrap around
to the first element of the set and switch-left results in
a mode transition from m; to m;_; with wraparound
to the last element of the ordered set. In this scenario
(with just two control modes) a mode switch in one
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Fig.1: Goal configuration
used for simulation using a 15
x 30 2D grid.

mode simply results in a transition to the other mode (Figure 2).
We model the simulated human as a Markov Decision Process described in Section
3.1 and use value iteration to obtain a goal-dependent policy, p(als, g). The reward

* Note that we are exploring just one possible configuration of goals in this illustrative example.
The proposed metric is applicable for any configuration as well as number of goals.
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Fig. 2: Mode switching diagram for 2D grid world world.

function R is designed to minimize the distance travelled as well as the number of
mode switches executed. The optimal policy shown in Figure 3 is obtained using value
iteration. Upon inspection, we can see that following the policy from any states results
in straight line paths and minimal number of mode switches.

The top row of Figure 4 shows the disambiguation metric computation for all states
(visualized for each mode separately) for a uniform prior over goals and A = 0. Within
the bounds of the goal region, we see that the maximally disambiguating states for the
Horizontal mode correspond to the states that are aligned with goal B along the y di-
mension; this meets our sanity check as any movement left in these states would suggest
goal A, any movement right would suggest goal C and a mode switch to vertical motion
would suggest goal C. Similarly, the maximally disambiguating states for the Vertical
mode are states that are aligned with goal C along the x dimension. In this case we once
again see that any movement up suggests goal A, any movement down suggests goal B
and a mode switch to horizontal motion would suggest goal C. Since no two goals have
the same action mapped to them, they allow for maximal goal disambiguation.

We also see that in Figure 4 (top and bottom) there are states in which the disam-
biguation metric is identically equal to zero (dark blue color). Under the assumption
that the human approximately behaves like the MDP policy shown in Figure 3, we can
see that for any states outside of the horizontal and the vertical limits of the goal region,
there is a high likelihood that the human would choose the same action in those states
regardless of the intended goal. As the actions are indistinguishable, an observer will
not be able to determine (from executed actions alone) the true intended goal with cer-
tainty. In the bottom row of Figure 4, the priors are non-uniform with the probability
associated with goal C set to be zero. This simulates a scenario in which the history of
states and actions have already caused the Bayesian update of belief to assign zero prob-
ability to goal C. Effectively, it becomes a question of disambiguating between goals A
and B. The disambiguation metric computed for this scenario correctly ignores goal C
completely.
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Fig. 3: Learned policy using value iteration for the each of the goals in the goal config-
uration shown in Figure 1.
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Fig. 4: Top Row: D(s) computed for all states in the grid world over a uniform prior for
each mode. Bottom Row: D(s) computed for all states in the grid world for nonuniform
prior for each mode. Note that A was set to be 0.0 to highlight the contribution from the
mutual information term.



