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Appendix

6.1 Proofs

Proposition 1: Under Assumption 1, Algorithm 1 is ✏+ 1/(1 + |A|)-safe (with
respect to Ŷ , Ẑ).

Proof. Given a sequence of data points (Y1, Z1), · · · , (YT , ZT ), denote the sub-
sequence of “unsafe” data as (Yc1 , Zc1), · · · , (YcM , ZcM ) where Zct is the t-th
unsafe example (i.e. f(Zct) < f0), so M = |A|. Suppose that Ẑ is also unsafe,
i.e. f(Ẑ) < f0. Let * · + denote an unordered bag (i.e. it is a set that can have
repeated elements). We can bound the safety by
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By the assumption of exchangeability we are equally likely to observe any per-
mutation of *(Yc1 , Zc1), · · · , (YcM , ZcM ), (Ŷ , Ẑ)+. Intuitively, it is equally likely
for g(Ŷ ) to be the largest, 2nd largest, etc, among g(Yc1), · · · , g(YcM ), g(Ŷ ).
Formally, the random variable |{t | g(Yct) < g(Ŷ )}| + U takes on all values
{0, 1, · · · ,M} with equal probability. Therefore,
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We can combine this with the original result to get
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6.2 Lower bound on the false positive rate

Consider a function w that maps a dataset D = (g(X1), Y1), · · · , (g(XT ), YT ) of
unsafe examples, and a new data point g(X̂), to {0, 1}. We argue that any w

that gives a distribution-free false negative rate guarantee should depend only on
the ordering between g(X1), · · · , g(XT ), g(X̂), and not on their specific values.
In other words, w should take the form defined by

w(D, Ẑ) =

(
�

⇣
#{t, g(X̂) < g(Xt)}

⌘
with probability �

1 with probability 1� �

(6)

for some deterministic function � and real number �. We know that when the
data is exchangeable, #{t, g(X̂) < g(Xt)} is uniformly distributed on {0, 1, · · · , T}.

Case 1 Suppose � takes the value 0 for at least one possible input; then the
false negative rate is given by

FNR � �/(1 + T ) (7)

and the false positive rate is given by

FPR � 1� � (8)

so combined we have

FPR � 1� � � 1� (1 + T )FNR � 1� (1 + T )✏ (9)

Case 2 Suppose � takes the value 0 for none of the inputs; then the false
negative rate is given by

FNR = 0,FPR = 1 (10)

so we would still (trivially) have FPR � 1� (1 + T )✏.
So far we have shown that if w were to take the specific form of Eq. (6), then

the false positive rate must be lower bounded by 1 � (1 + T )✏. In other words,
when ✏ = o(1/T ), the false positive rate tends to 1 when T is large.
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6.3 Additional Experimental Details: Driver Alert System

Safety score: We define the safety score by the Mahalanobis distance between
the ego-vehicle and the agent, where the first eigenvector is aligned with the
ego-vehicle’s velocity vector, and the second eigenvector is orthogonal to the ego-
vehicle; the magnitude of the first eigenvector is the magnitude of the velocity,
and the magnitude of the second eigenvector is approximately half of a car width
(we use 1m). Intuitively, this means that agents that are along the ego-vehicle’s
velocity vector appear closer than agents in the perpendicular direction. This
metric is similar to time to collision (TTC), but it is continuous whereas TTC
is not — TTC is infinite unless two vehicles are exactly on a collision course.

Dataset details: The nuScenes dataset includes 952 scenes collected across
Boston and Singapore, divided into a 697/105/150 train/val/test split (the same
split used for the original Trajectron++). Each scene is 20 seconds long. The
Kaggle Lyft Motion Prediction dataset is a subset of the full Lyft Level 5 dataset
(chosen over the full dataset for computational reasons). It includes approx-
imately 16k scenes, divided into an 70%/15%/15% train/val/test split. Each
scene is 25 seconds long. Both datasets include labeled ego-vehicle trajectories
as well as labeled detections and trajectories for other agents in the scene. Note
that for both of these datasets, because the training split was used to train the
Trajectron++ model, we used the validation split as the input training data for
Algorithm 1.

Additional experimental results: We demonstrate empirically on the
nuScenes dataset that the sum of ✏ and the false positive rate must be high
when there are few (e.g. < 1/T ) samples, which is consistent with what our
theory from Section 3.2 would predict. Figure 4 plots the epsilon bound as well
as the false negative and false positive rates vs. the number of unsafe samples
in the validation dataset; we see that when ✏ decreases as 1/T , the false positive
rate is relatively flat and low.

Fig. 4: Epsilon bound, false negative rate, and false positive rate on the nuScenes dataset
while varying the number of unsafe samples. Consistent with our theory from Sec-
tion 3.2, the sum of ✏ and the false positive rate is high when there are few samples.

We also demonstrate empirically on the Kaggle Lyft dataset that the variance
on the false negative rate over different train/test splits is low. Table 1 displays
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the variance on the false negative rate calculated over the 100 trials at each ✏

value. All of the variances are well below 0.003, suggesting that the test sequence
false negative rates are clustered around ✏ (rather than having some sequences
that fail on zero examples and others with catastrophic failures). As further
evidence, in Figure 5, we provide a representative box plot of the false negative
rates over the 100 trials with ✏ = 0.04. The variances are indeed clustered around
0.04.

✏ 0.02 0.04 0.06 0.08 0.10
Variance 0.00096 0.0019 0.0014 0.0023 0.0024

Table 1: Variance on the test sequence false negative rates at different ✏.

Fig. 5: Box plot of the 100 false negative rates calculated over randomized train/test
splits with ✏ = 0.04.

6.4 Additional Experimental Details: Robotic Grasping

Experiments

Model and dataset details: The Grasp Quality Convolutional Neural Net-
work (GQ-CNN) from [18] is a model that classifies whether a candidate robotic
grasp will be successful. The inputs to a GQ-CNN are a point cloud representa-
tion of an object, y, and a candidate grasp, u. A GQ-CNN outputs the predicted
probability, Q✓(y,u), that the candidate grasp will be able to successfully pick
and transport the object. We use this predicted probability as the safety score,
g = Q✓(y,u). We consider a candidate grasp “unsafe” if it will not be able to
successfully pick the object (i.e. the true label is Z = 0). Note that this is exactly
the ROC curve threshold tuning setup. We use the DexNet dataset of synthetic
objects grasped with a parallel jaw gripper [18], which includes approximately
500k pick attempts not used in training the GQ-CNN model. These are divided
into a 50%/50% train/test split. Each example is labeled a success if the robot
successfully picks and places the object, and a failure otherwise.


