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Abstract. This document contains supplimentary material for the pa-
per titled “Decentralized Robot Swarm Clustering: Adding Resilience to
Malicious Masquerade Attacks” that has been submitted to the Work-
shop on the Algorithmic Foundations of Robotics (WAFR’22). In par-
ticular, this document contains:

• A more comprehensive discussion of related work.

• Additional descriptions of algorithms using both images and psueodode.

• Additional pictures of the algorithms running on the Kilobot hard-
ware testbeds.

The abstract for the paper now follows. We compare the resilience of
four distributed robot swarm clustering algorithms to masquerade at-
tacks launched from malicious robots within the swarm. The clustering
algorithms are distributed variants of DBSCAN and k-Means that have
been modified for use on a distributed robot swarm that only has access
to local communication and local distance measurements. We subject
two distributed swarm variants (one based on k-Means and one based on
DBSCAN) to malicious masquerade attacks and observe how clustering
performance is affected. We then modify each variant to include a dis-
tributed Intrusion Detection and Response System (IDRS) to detect ma-
licious robots and maintain the swarm’s integrity despite an attack. We
evaluate all four variants in both simulation and in a hardware testbed
containing a swarm of 25 Kilobot robots. We find that centralizing data
within the swarm makes the swarm more vulnerable to malicious at-
tacks, and that distributed IDRS relying on local message passing can
effectively identify malicious robots and reduce their negative effects on
swarm clustering performance.

1 More In Depth Discussion of Related Work

We now survey related work on distributed clustering algorithms, security in
robot swarms, security in distributed networks, network attack classification,
and other combinations of clustering and robot swarms. We conclude this section
with a discussion of the most closely related work how it differs from our work.
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1.1 Distributed Clustering Algorithms

Clustering algorithms, such as k-Means [32] and DBSCAN [26], were originally
developed in the 1960s and 1970s to classify multivariate data for the purposes
of data analysis. Originally invented when single-processor computers were the
norm, the original versions of these algorithms were designed for use on central-
ized computational architectures. Clustering remains an important tool for data
classification and an area of continued research [14, 8, 5, 36]. More recent variants
of k-Means and DBSCAN have been developed to take advantage of distributed
computing [4, 37, 47, 25, 33, 17, 9] including over peer-to-peer, wireless, and ad
hoc networks [12, 51, 43, 41, 29, 27, 35, 50]. Data is partitioned among multiple
computers and then each computer clusters its own partition of the data set.
Communication is used to identify similar clusters found on multiple computers.
Such work has largely focused on the potential time savings that can be achieved
by using multiple CPUs or computers working together and/or the problem of
clustering more data than can be stored on a single computer. However, work
has also been done on distributed clustering algorithms that ensure the privacy
of the data being clustered. [21, 38, 20, 39, 28, 3, 10].

The distributed clustering approaches listed above seek efficiency by per-
forming as much computation as is practical on a single computer and mini-
mizing communication between computers. In contrast, we explore the problem
of distributed swarm clustering, in which each robot is in charge of a single
datapoint—its own location—and clustering is the result of an emergeant pro-
cess involving many local communication between robots but relatively simple
computations on each robot.

1.2 Security in Robot Swarms

Existing work in swarm robotics security has focused on surveying the broad
range of threats to the swarm and developing preventative security measures
[19, 23, 24]. Thompson and Thulasiraman view the problem through a network
security lens and use authenticated encryption to transmit classified information
in a swarm of three simulated UAVs [45]. Others, such as Dolev et al., success-
fully implemented public and private encryption key procedures within a swarm,
ensuring confidential data transfer [13]. Wolf et al. recently published a study
on how malicious robots could influence a decentralized swarm programmed to
encircle a target [49]. The swarm relied on distances to their neighbors to iden-
tify the best positions to form a perimeter. Malicious robots within the swarm
attempted to gain access to the target by creating a gap in the circle’s arc (simu-
lations show that malicious robots are able to control 6 - 23% of the perimeter).

Gil et al. detect spoofing, one robot claiming to be multiple robots to gain
undue influence, by monitoring the directional wireless radio signatures asso-
ciated with incoming messages [16]. Thus, Gil et al. show that if robots are
equipped with appropriate sensors then hardware signatures and observed data
can help identify malicious robots. This is one reason why we have chosen to fo-
cus on malicious attacks that do not involve spoofing the robot ID of the sending
robot.
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1.3 Security in Distributed Networks

A survey on Intrusion Response Systems indicates that many network monitoring
frameworks, such as EMERALD and CITRA, use distributed surveillance and
communication to check for suspicious activity, and respond to threats by taking
action locally [44]. These algorithms provide evidence that security in a swarm
can be handled locally, if swarm-specific vulnerabilities are addressed.

However, other work has shown that an IDS often struggles to determine what
constitutes abnormal behavior, and falsely identifies outlier data as tampered
data [23]. This issue can exacerbated in swarms if local interactions happen to
differ from the swarm’s overall emergent behavior [24]. The resilient swarm k-
Means algorithm that we present includes the detection false positive malicious
labelings. This provides a mechanism for reintegrating robots wrongly labeled
as malicious.

1.4 Network Attack Classification

To disrupt the clustering algorithms in our work, we develop attacks that target
specific weakness of the algorithms. According to one classification system, this
type of attack is malicious, intentional, human-generated, and seeks to corrupt
information [22]. A second taxonomy offers a more specific name: a masquerade
attack [6]. Masquerading is an insider attack, as the malicious robot has gained
access to the system, but may not have much knowledge of the systems functions
or procedures.

Past research notes that responding to masquerade attacks is challenging, as
any solution must be specifically tailored to the way the malicious robot disrupts
the swarm [19].

1.5 Other Combinations of Clustering and Robot Swarms

Other clustering algorithm have been developed that take inspiration from swarms
in the biological world. For example, in ant-inspired clustering and sorting algo-
rithms, virtual ‘ants’ ‘carry’ data around a virtual space, where the probability
of ‘picking up’ or ‘dropping’ data is determined by its similarity to other nearby
datapoint [31, 46, 30]. Particle swarm optimization is a general technique inspired
by communication in swarms of birds that has been adopted for clustering (as
well and many other applications). Surveys of ant inspired clustering algorithms
and particle swarm based clustering algorithms can be found in [18] and [1],
respectively.

1.6 Closely Related Work

McCune and Madey introduce an ant-inspired pick-up, carry, and drop algo-
rithm for resource aggregation they have called “Decentralized k-Means Clus-
tering” drawing a parallel between k base stations (cluster centers/ant nest),
mobile agents (transport nodes/ants), and stationary sensors (resources, food).
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They test this idea using virtual simulations [34]. In contrast, the appropriate
metaphor for our work is that robot locations are datapoints—and the objective
is to find k cluster centers (also robots). Other differences between our work and
[34] include the fact that we perform experiments in a hardware testbed and
investigate both: (1) how swarm clustering algorithms can be hacked and (2)
made more resilient to hacking.

Another set of closely related work includes k-median algorithms designed
for use on graphs and trees [48, 11, 2]. See [7] for both an overview of this sub-
field as well as an example pertaining to facility placement on road networks.
Because we use robot locations for both datapoints and the k cluster “centers,”
once could make the argument that we are using median values and not mean
values. However, previous work on the k-Means and k-medians algorithms has
defined the distinction between them as follows: k-Means seeks to minimize the
sum of the L2 norm from all nodes to their corresponding cluster’s center, while
k-medians seeks to minimize the sum of L1 norms from all nodes to their corre-
sponding cluster’s center. In contrast, the swarm algorithms that we investigate
consider distance as defined through/along the communication graph and not
through the Euclidean space in which the graph is embedded.

Graph distance is an appropriate metric for robot swarms that communicate
locally, lack GPS data, and can determine line-of-sight distance to neighboring
robots using on board sensors. For this reason graph distance is commonly used
in robot swarm algorithms. (Graph distance is also used for other problems
at the intersection of robotics and graph theory; for example, the shortest path
planning problem and traveling salesperson problem). Major differences between
our work and preexisting work on k-Means and k-median algorithms is our focus
on distributed algorithms, swarms of robots, and hardware experiments—and,
in particular, our exploration of hacking and resilience to hacking.

1.7 Summary of Contributions of this Work vs. Previous Work

In contrast to past work on distributed clustering algorithms, in general, our re-
search focuses on how malicious robots can influence the emergent behavior from
within the algorithms procedures on real-robot swarms. We also extend previous
work to study how distributed algorithms might identify and ignore data from a
malicious robot. Finally, we examine the strengths and vulnerabilities that arise
from the distributed nature of swarm algorithms, with the intent to build more
secure and practicable robot swarms.

A preliminary and non-archival version of this work was presented as a poster
at the IEEE International Symposium on Multi-Robot and Multi-Agent Systems
in 2021 [15].

2 Preliminaries

2.1 Nomenclature

The robot swarm S = {r1, . . . , rn} contains n robots with unique IDs 1 . . . n. Let
dij denote the distance between robots ri and rj . We assume that if robot ri can
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communicate with rj then rj can determine dij . We do not require robots to
know their global positions. The distance between two neighboring robots can
be determined without global positions, for example, by observing message time
of flight or received signal strength. The communication graph over the swarm
is G = (V,E), where we abuse our notation by letting robots represent their
(own) respective nodes in the node set V ≡ S = {r1, . . . , rn}. The existence of a
directed edge (ri, rj) ∈ E indicates that robot ri can communicate with rj .

While communication between robots in the real world is generally non-
symmetric, it is algorithmically convenient to impose symmetry in the com-
munication graph such that (ri, rj) ∈ E ⇐⇒ (rj , ri) ∈ E. This can be
done by having robot rj drop messages received from robot ri whenever dij is
greater than a user defined threshold distance d, i.e., such that the human user
knows a swarm’s communication hardware will reliably send/receive messages
further than d. We now formalize this requirement. Define the “maximum disc-
neighborhood distance” dmax as the maximum distance for which a bidirectional
dmax-disc communication sub-graph exists within the swarm’s natural/raw com-
munication network. dmax = arg maxd ({(i, j) | dij ≤ d} ⊂ E). By construction,
bidirectional communication exists between each pair of robots ri and rj such
that dij = dji ≤ dmax. Thus, a d-disc communication graph with symmetry of
the form “(ri, rj) ∈ E ⇐⇒ (rj , ri) ∈ E” can be achieved by having robot rj
accept messages from robot ri only if dij ≤ d for d ≤ dmax.

Let Ed = {(i, j) | dij ≤ d} be the set of all edges of length d or less. Define
Gd = (V,Ed). Having robots drop messages as described above, guarantees

((ri, rj) ∈ Ed) ∧ (d ≤ dmax) =⇒ ((rj , ri) ∈ Ed)

In other words, robot rj can infer that if it (rj) accepts a message from ri then
the sender (ri) will accept messages from rj in return. Cluster membership is
determined based on the topology of the d-disc communication graph Gd.

The DBSCAN algorithm has two parameters: a distance threshold d that de-
termines whether or not two nodes (robots) are neighbors (we assume d ≤ dmax),
and the minimum number of neighbors m a node must have to be an ‘internal’
node. Each cluster found by DSCAN has a core of internal nodes. Thus, decreas-
ing m tends to increase the resulting number of clusters. The k-means algorithm
requires the user to define the number of clusters k.

2.2 Formal Problem Statements

We now define the swarm clustering and hacking problems.
Problem 1. Distributed Swarm Clustering: Given a swarm of n robots that
communicate locally, the swarm must collectively divide itself into mutually ex-
clusive subgroups (clusters) based on robot’s relative proximity such that robots
within a particular cluster are closer to other robots in their own cluster then
they are to robots in the other clusters.
Problem 2. Swarm Clustering Masquerade Attack: Given a swarm of n robots
that communicate locally and that is attempting to solve Problem 1, one or more
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malicious robot(s) must cause the swarm to find a lower quality solution (or
prevent the swarm from finding any solution) by injecting incorrect data into the
distributed algorithm–but not by simply disrupting communication.

A notable element of Problem 2 is that the malicious robots seek to alter the
outcome of the swarm algorithm instead of simply blocking communication.

Problem 3. Resilient Swarm Clustering: Given a swarm of n robots that com-
municate locally and that are solving Problem 1, as well as one or more malicious
robots that are attempting to hack the solution (by solving Problem 2), the swarm
must identify (or otherwise neutralize) the malicious robots.

2.3 Silhouette Coefficient Performance Metric

We use the silhouette coefficient [42] to evaluate clustering performance. This
value requires, for all n nodes, the average distance to all nodes within the
cluster, ai, and the average distance to all nodes not in the cluster, bi [40]. For
each node, a silhouette value is calculated si = bi−ai

max {ai,bi} . A silhouette value

is a number −1 ≤ si ≤ 1. Negative values indicate bad clustering and positive
values indicate good clustering. The final silhouette coefficient summarizing the
clustering accuracy for all nodes, is the maximum of the n silhouette values. If
the whole swarm is classified as a single cluster, the silhouette coefficient is zero.

3 Swarm k-Means Algorithm

In Section 3.1 we introduce Distributed Swarm k-Means, a modification of k-
Means designed to be run on by a robot swarm using local communication and
locally determined robot-to-robot distances. In Section 3.2 we show how a mali-
cious can attack Distributed Swarm k-Means by broadcasting incorrect data. In
Section 3.3 we present Resilient Swarm k-Means, which uses a distributed IDRS
to identify and block suspected malicious robots.

Discussion of swarm DBSCAN (including distributed algorithms, hacking,
and hacking resiliency from IDRS) appears in Section 4.

3.1 Distributed Swarm k-Means

The distributed swarm k-Means algorithm is designed to be similar to the orig-
inal k-Means algorithm, while working with (only) local communication and
using a notion of distance defined along the communication graph.

Each of the k clusters are associated with a “root” robot that is analogous
to a cluster “center” used in the original k-Means algorithm. At the beginning
of the algorithm the k root robots can be chosen randomly (for unsupervised
clustering) or selected by a user (for semi-supervised clustering).

The algorithm is iterative. At a high level, each iteration involves the follow-
ing two different distributed processes:
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1. Determine the cluster membership of all robots by calculating the graph
distance of each robot to its nearest root robot (cluster center). Robots
adopt the cluster label of the nearest root robot.

2. The new root robot of each cluster is selected to be closer to the center of
all robots belonging to that cluster.

An example of the Distributed Swarm k-Means algorithm running appears in
the main paper, while an example showing how the new root is chosen appears
in Figure 1.

Distributed Swarm k-Means Data

Iteration 1

Messages contain
each node’s
subtree size

Iteration 2

Cluster root
moves toward
cluster center

Fig. 1. Data passed in the Distribute Swarm k-Means Algorithm. We focus on the blue
cluster in this figure. The shortest path forest is found between the set of root nodes
and all other nodes (green and blue edges). Each robot calculates the number of nodes
in the subtree of the shortest-path sub-tree of which it is the root by summing over
the subtree sizes of its children and adding 1 to account for itself. Right: for the next
iteration, the root status passes to the old root’s child that has the largest subtree. In
iteration robot P had a subtree of size 10 (compared to 3, 3, and 1 for robots E, A,
and C, respectively; so, P becomes the new root. The algorithm terminates once any
robot has been root more than a predetermined number of times.
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The (step 1) distance calculation is accomplished by having the swarm cre-
ate a shortest-spanning forest over all robots, where each tree in the forest is
rooted at a particular cluster root. This is accomplished using a modification of
distributed Dijkstra’s algorithm—each robot chooses its parent to be the neigh-
boring node (in the communication graph) through which it can reach a cluster
root in the shortest amount of distance (through the communication graph).
Each node’s distance to a cluster root is calculated as the distance to its parent
plus its parent’s distance (through the communication graph) to its root. For
brevity we use the language “the subtree of node i” as shorthand for “the sub-
tree of the shortest spanning forest that descends from robot i,” where node i
may or may not be a cluster root.

In step 2, all nodes participate in a distributed calculation that provides each
node with the size of its subtree as well as those of its children. One consequence
of using (only) local communication is that the responsibility of being cluster
root must pass from robot to robot (instead of jumping directly to the cluster’s
centroid as would be typical in standard k-Means). During each iteration, each
of the k cluster roots compares the subtree sizes of its neighbors (all neighbors
of cluster roots are children), and then selects the neighbor with the largest
subtree to become that cluster’s new root during the next iteration. The process
of continually passing the cluster root to the best neighbor resembles a form of
gradient assent, and can be seen in Figure1.

The gradient assent form of root relocation that we use is necessary in the
decentralized communication case that we consider. However, a negative conse-
quence of this distributed method is that root responsibility tends to settle into
small cycles, where root status is passed back and forth between a small subset
of nodes near local optima. This prevents convergence to a stationary cluster-
ing, and so we require a stopping criterion beyond the stabilization of roots at
particular robots. To prevent cycling behavior we introduce the user parameter
zmax which defines the maximum number of times any node may pass root re-
sponsibility to another. After a particular robot is root zmax + 1 times it retains
root responsibility and the algorithm converges.

Pseudocode for the Distributed Swarm k-Means algorithm appears in Algo-
rithm 1, with major subroutines appearing in Algorithms 2-5.

Pseudocode for the Distributed Swarm k-Means algorithm The algo-
rithm is distributed such that Algorithm 1 is designed to run simultaneously
on each robot in the swarm. The set of initial cluster centers Cinit is provided
(by a user or some other means such as random selection). Each robot ini-
tially knows its own ID number i and the value of zmax. Values are initialized
using the subroutine initializeKmeans() (line 1). Note that the subroutine
initializeKmeans() itself is outlined in Algorithm 2. Each robot tracks the
size of its subtree si and the subtree sizes of each neighbor j using an array
entry sj indexed by j. The array entry si is initialized to 1 (line 2) to reflect the
fact that this robot is in its own subtree.
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Algorithm 1 Distributed Swarm k-Means

Require: i /∗ ID of this robot (node) ∗/
Require: Cinit /∗ Set containing IDs of initial cluster centers ∗/
Require: zmax /∗ Number of times a node can transfer root ∗/
1: initializeKmeans() /∗ initializes variables ∗/
2: si ← 1 /∗ this nodes subtree size ∗/
3: loop
4: if received new message M then
5: j ←M.senderID
6: if M.t < t or dji > d) then

/∗ message is out of date or beyond comms radius ∗/
7: continue
8: if M.t > t then

/∗ a new k-Means iteration has started ∗/
9: resetDistanceTree()

10: t←M.t
11: updateDistanceTree(M)

12: si ← 1 +
∑

j∈Nc
sj /∗ calculate this node’s subtree size ∗/

13: populateMessageMetaData(M̃)
14: M̃.s ← si
15: if droot = 0 and z ≤ zmax and epochTimer() then

/∗ pass cluster root to child of root with largest subtree ∗/
16: M̃.newRootID = arg maxj∈Nc

sj

17: Broadcast(M̃)

The algorithm works in a distributed fashion that relies on local information
exchange via messages. Each distributed iteration of the algorithm is associated
with a unique iteration number t. This is used to ensure that graph distances
reflect the current cluster roots. Any message that is received is checked for va-
lidity (lines 4-7), where messages are ignored if they are relevant to a previous
iteration or if they have been sent from robots beyond the allowed communi-
cation radius d. Whenever it is discovered that the iteration number has been
increased, then the distance calculation is reset and this robot switches to using
the new iteration number (Lines 8-10).

The shortest spanning forest distance data is updated to reflect most cur-
rent information from all neighbors using the subroutine updateDistanceTree()
(line 11). The subroutine updateDistanceTree() is discussed later and appears
in Algorithm 4. For now it is sufficient to understand that updateDistanceTree()
performs two important tasks. First, runs the distributed Dijkstra’s variation
that updates the cost to root values (used to calculate graph distances, par-
ent relationships, and the topology of the shortest spanning forest). Second, it
detects if/when this robot has been promoted to be a cluster root—in which
case this robot increases the value of t and restarts the distributed distance
calculation for the new iteration.
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Algorithm 2 initializeKmeans()

1: parent← ∅ /∗ the parent of this node ∗/
2: t← 0 /∗ k-Means iteration ∗/
3: droot ←∞ /∗ distance to root ∗/
4: Nc ← ∅ /∗ set of this node’s children ∗/
5: z ← 0 /∗ times this robot has been cluster root ∗/
6: if i ∈ Cinit then
7: droot ← 0
8: t← 1

Algorithm 3 resetDistanceTree()

1: droot ←∞
2: parent← ∅
3: Nc ← ∅

Algorithm 4 updateDistanceTree(M)

1: if dji + M.droot < droot then
/∗ a shorter path to a cluster root has been found ∗/

2: parent← j
3: droot ← dji + M.droot

4: if i = M.parent then
/∗ this node i is the parent of the sending node j ∗/

5: Nc ← Nc ∪ {j}
6: sj ←M.s
7: else if i 6= M.parent then

/∗ this node i is not the parent of the sending node j ∗/
8: Nc ← Nc \ {j}
9: if parent = j then

/∗ sending node j is the parent of this node i ∗/
10: if M.newRootID = i then

/∗ this node j is the new cluster root ∗/
11: parent← ∅
12: t← t + 1
13: z ← z + 1

This robot updates the number of nodes contained in its subtree (continuing
in Algorithm 1, line 11). Basic message data related to iteration, tree distances,
etc. is populated using the subroutine populateMessageMetaData() (line 13).
Details of populateMessageMetaData() appear in Algorithm 5. If this robot is
the root (droot = 0) and this robot has not exhausted its root passing threshold
z ≤ zmax, then this robot chooses the new cluster center the child with the most
descendants, and adds the child’s ID to the outgoing message (lines 15-16). The
outgoing message is broadcast on line 17.
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Algorithm 5 populateMessageMetaData(M̃)

1: M̃.senderID ← i
2: M̃.t← t
3: M̃.parent← parent
4: M̃.newRootID = ∅

Pseudocode for the updateDistanceTree() subroutine We now describe
the pseudeocode of subroutine updateDistanceTree() which appears in Algo-
rithm 4. This subroutine is responsible for running the distributed Dijkstra’s
variation that updates the cost to root values, as well as restarting the dis-
tributed distance calculation if/when this node is promoted to be a cluster root.
Whenever a neighbor is found that provides a shorter path to reach the goal,
then that neighbor is set as this node’s the parent, and the distance to the goal
is updated accordingly (lines 1-3).

If a message is received from a node that has become one of this nodes
children, then this node updates the set of children that it tracks internally, and
also records the size of that child’s subtree (lines 4-6). If this node receives a
message from a non-child, then it ensures that the parent does not appear in
its child list (lines 7-8). If the messages is from this node’s parent and this node
has been promoted to cluster root, then it records that it now has no parent,
increases the algorithm iteration t, and also increases its count of the number of
times it has been root z (lines 9-13).

3.2 Hacking Distributed Swarm k-Means

If a malicious actor gains control of one or more robots, the now-malicious robots
may work within the algorithm’s procedures to disrupt the intended emergent
behavior. This masquerade attack, conducted by an insider with limited knowl-
edge of the algorithm, can have disastrous effects.

A disruption to the Distribute Swarm k-Means clustering algorithm could
potentially be anything that alters the robots final cluster labels, classifies mul-
tiple or all the clusters as a single cluster, or does not allow the algorithm to
finish. However, in this paper we focus on the case where a malicious actor(s)
attempt to gain root status of a cluster(s) by falsely advertising large subtree
sizes.

A depiction of the malicious attack is shown in Figure 2. To disrupt clustering,
a malicious robot falsely reports that its branch is very large. If the malicious is
an immediate neighbor of a cluster root, then the root erroneously believes that
the malicious robot should become root and passes it root responsibility. If the
the malicious robot is not a direct neighbor of a cluster root, then well intentioned
parents, grandparents, etc. of the malicious robot unknowingly report subtrees
that are also erroneously large. As a result, the responsibility of being root is
transformed one step closer to the malicious robot each iteration. Eventually
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a direct neighbor of the malicious robot becomes root, and then the malicious
robot itself.

Hacking Distributed Swarm k-Means

Malicious robot sends
a large and incorrect
subtree size

Hacking Distributed Swarm k-Means
Cluster root transfers
along intermediate
nodes toward malicious
robot

Hacking Distributed Swarm k-Means

Malicious robot
eventually becomes root,
hijacking cluster

Fig. 2. A malicious attack in which a malicious robot becomes a cluster root by claiming inflated subtree sizes. Root
status is transferred one step closer to the malicious robot each iteration. Eventually the malicious robot becomes a
cluster root.

A malicious robot that gains root responsibility could potentially exploit
such a position to cause harm to the swarm and/or the environment (since
clustering may be used as a prepossessing step for, e.g., sub-team formation,
task allocation, etc.). However, in this paper we shall focus on the damage that
a malicious robot can cause to the clustering itself. After becoming a cluster
root we have the malicious robot replace the root’s messages with an empty
broadcast. Lacking messages from the root, other robots belonging to the now-
dead cluster assume the root has shifted away, and join one of the other k − 1
remaining clusters instead. This removes one of the k clusters from the swarm,
resulting in poor clustering performance. This is demonstrated in the Attack row
of Table 1.

3.3 Resilient Distributed Swarm k-Means

The resilient swarm kmeans algorithm is conceptually similar to the distributed
swarm Kmeans algorithm, but is designed to detect malicious robots, and then
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After initialization Midway At end

Algorithm

Attack

IDRS

Table 1. The k-Means algorithms in progress. Malicious robots in the Attack and IDRS algorithms are
shown rimmed in red. Superimposed stars indicate the location of the root after initialization and midway
through the algorithm. Each cluster has been encircled with a line of the cluster’s color to better show the
change in grouping over time.

remove their influence on the distributed algorithm. A High-level graphical de-
scription of the Distributed Swarm k-Means algorithm appears in Figure 3. The
distributed IDRS works by having robots send the ID numbers of all nodes in
their subtrees instead of only sending sub-tree size. If two robots claim to have
the same robot as part of their sub-tree, then the other robots add both of them
to a malicious actor list. While this does not completely eliminate the nega-
tive effects of bad actors, it does reduce the damage a single malicious robot can
cause. All robots share their lists and ignore robots suspected of being malicious.
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Resilient Swarm k-Means

Messages contain
each node’s
subtree nodes

Resilient Swarm k-Means: Malicious
Malicious robot
broadcasts a large
and incorrect subtree
node list

Resilient Swarm k-Means: Detection

Robots ignore children
that have conflicting
subtree nodes

Resilient Swarm k-Means: Remove Bad

Cluster distance trees
repair around
conflicting robots

Resilient Swarm k-Means: Repair Good

Wrongly accused robots
are reincorporated once
their subtree size is 1

Fig. 3. Resiliant Swarm k-Means incoporates a distributed IDRS by having all nodes send the IDs of nodes in their subtrees (insead
of only subtree size). Robots with confilciting descendent lists are suspected of being mallicios and ignored. The shortest path foreset
then re=routes around malicious robots. Robots that were once considered adverasrial can be reinstaed once the subtree that they
broadcast contains onely themself.

The shortest spanning forest eventually re-routes around all robots suspected of
being malicious. This re-routing provides a means of detecting a subset of good
robots that have been accidentally labeled as malicious—robots that broadcast
subtrees containing only themselves are not malicious.
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Algorithm 6 Resilient Swarm k-Means

Require: i /∗ ID of this robot (node) ∗/
Require: Cinit /∗ Set containing IDs of initial cluster centers ∗/
Require: zmax /∗ Number of times a node can transfer root ∗/
1: initializeKmeans() /∗ initializes variables ∗/
2: Si ← {i} /∗ this nodes subtree set ∗/
3: B← ∅ /∗ list of bad actors ∗/
4: loop
5: if received new message M then
6: j ←M.senderID
7: if M.t < t or dji > d or j ∈ B then

/∗ message is out of date or beyond comms radius ∗/
/∗ or message is from a suspected malicious ∗/

8: continue
/∗ synchronize bad actor list ∗/

9: B← B ∪M.B
10: B← calculateGoodActors()
11: blockBadActors(B)
12: if M.t > t then

/∗ a new k-Means iteration has started ∗/
13: resetDistanceTree()
14: resetConflictDurations(Nc \B,Nc)
15: t←M.t
16: updateDistanceTreeB(M)
17: if settlingTimeOver() then
18: B← calculateBadActors()
19: B← calculateGoodActors()
20: blockBadActors(B)

21: Si ← {i}+
⋃

j∈Nc
Sj

22: populateMessageMetaData(M̃)
23: M̃.S ← Si

24: M̃.B← B
25: if droot = 0 and z ≤ zmax and epochTimer() then

/∗ pass cluster root to child of root with largest subtree ∗/
26: M̃.newRootID = arg maxj∈Nc

|Sj |
27: Broadcast(M̃)

We note that this form of IDRS requires messages to increase in size from
O(1) to O(n). While there are efficient means of passing ID lists (bit arrays,
for example), it may not be appropriate in all cases. We also note that it is
not always possible to reinstate good robots accidentally listed as malicious (a
robots subtree will only decrease in size if there is a second communication path
through which its descendants can re-route).

Pseudocode for Resilient Swarm k-Means Pseudocode for the resilient
swarm kmeans algorithm appears in Algorithm 6. Difference vs. the swarm
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kmeans algorithm are highlighted in blue. For brevity our discussion will focus
on these differences. The set containing this node’s subtree nodes is initialized
to contain only this robot (line 2), while the bad actor list is initialized to the
empty set (line 3). Messages are also ignored if they come from robots on the
bad actor list (line 7).

There is a high consequence to two robots on different branches of a shortest-
path tree erroneously reporting the same robot as belonging to their respective
sub-trees (since this may cause them to be labeled as bad actors). However,
such condition can temporarily occur—even if no bad actors are involved—in
the normal course of distributed Dijkstra’s algorithm3. It can also happen due
to a dropped messages. Each time a conflict is detected two robots are placed
on the bad actor list—yet only one is actually a bad actor. Therefore, some
mechanism must be added to prevent pre-convergence data from being used to
add robot to the bad actor list, and another to rehabilitate the status of robots
that have been incorrectly placed on the bad actor list.

Avoiding problems caused by start-up effects is accomplished by defining a
“conflict duration”, and then only adding robots to the bad actor list if they re-
port conflicting data for longer than the conflict duration. Conflicts are defined as
ordered tuple, a conflict (j, `) means that j is suspected of being a malicious robot
due to a conflict with ` while (`, j) means that ` is suspected of being a malicious
robot due to a conflict with j. The conflict duration of one node conflicting with
another is incremented (line 18) inside the subroutine calculateBadActors()
(this subroutine is itself is described in Algorithm 8). The conflict duration for all
non-bad-actors are also reset when there is a change in the root node (line 14)
using the subroutine resetConflictDurations(Nc \ B,Nc), which resets all
timers for conflicts (j, `) such that j ∈ Nc \B and ` ∈ Nc \ j.

Robots are removed from the bad actor list once the subtree set they report
contains only themselves (line 19) inside the subroutine calculateGoodActors()
(this subroutine is itself is described in Algorithm 8). This will often happen after
the shortest path forest rewires to avoid a wrongly accused node.

The bad actor list is updated (lines 9 and 18), and then used to remove
suspected bad actor nodes a parents and children (lines 11 and 20) using the
subroutine blockBadActors(B) (this subroutine is itself is described in Algo-
rithm 10).

Pseudocode for updateDistanceTreeB(M) subroutine This node updates
its subtree information (line 16) using the subroutine updateDistanceTreeB(M),
which is similar to updateDistanceTree(M) used in the original (non-IDRS)
version, except that subtree set membership is tracked instead of set size. This
node calculates its subtree set as the set union of its children’s subtrees plus the
set containing itself (line 21). Both set membership and bad actor lists are sent
to other robots (lines 23-24).

3For example if the optimal path passes through many more robots than some other
suboptimal path with fewer robots but larger graph distance.



Suplimentary Material 17

Algorithm 7 updateDistanceTreeB(M)

1: if dji + M.droot < droot then
/∗ a shorter path to a cluster root has been found ∗/

2: parent← j
3: droot ← dji + M.droot
4: else if i = M.parent then

/∗ this node i is the parent of the sending node j ∗/
5: Nc ← Nc ∪ {j}
6: Sj ←M.S
7: else if i 6= M.parent then

/∗ this node i is not the parent of the sending node j ∗/
8: Nc ← Nc \ {j}
9: Sj ←M.S

10: if parent = j then
/∗ sending node j is the parent of this node i ∗/

11: if M.newRootID = i then
/∗ this node j is the new cluster root ∗/

12: parent← ∅
13: t← t + 1
14: z ← z + 1
15: else
16: droot ← dji + M.droot

Algorithm 8 calculateBadActors()

/∗ check for bad actors ∗/
1: for j ∈ Nc \B do
2: for ` ∈ (Nc \B) \ j do
3: if Sj ∩ S` 6= ∅ then
4: if conflictDurationExceeded(j, `) then
5: B← B ∪ {j}
6: else
7: conflictDurationIncreased(j, `)

8: return B

Pseudocode for other subroutines The calculation of bad actors is accom-
plished using the subroutine calculateBadActors() (Algorithm 8). This sub-
routine checks each ordered pair of nodes that are not currently on the black
list, to see if the subtree sets they report are in conflict. If a conflict is detected
and the conflict time has been exceeded then the first node of the pair is added
to the blacklist, if a conflict is detected but the conflict time has not yet been
exceeded then the conflict time is updated.

Removal of wrongly suspected nodes from the bad actor list is accomplished
using the subroutine calculateGoodActors() (Algorithm 9). This subroutine
checks each node to see if the subtree that it reports contains only itself. If so,
then the node is removed from the bad actor list.
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Algorithm 9 calculateGoodActors()

/∗ check for wrongly accused nodes ∗/
1: for j ∈ B do
2: if Sj = {j} then
3: B← B \ {j}
4: for ` ∈ Nc \ j do
5: conflictDurationReset(j, `)

6: return B

Algorithm 10 blockBadActors(B)

1: Nc ← Nc \B
2: if parent ∈ B then
3: parent← ∅
4: droot ←∞

The subroutine blockBadActors(B) (Algorithm 10) is used to remove the
negative effects of suspected bad actors. It prevents nodes suspected of being
malicious from being the parents or children of other nodes.

4 Swarm DBSCAN

This section focuses on versions of DBSCAN we have modified for clustering
robot swarms into subsets based on proximity. The organizational structure or
this section is similar to the previous section. In Section 4.1 we introduce Dis-
tributed Swarm DBSCAN, a modification of DBSCAN that can be run on a
distributed swarm of robots that have (only) local communication and local ac-
cess robot-to-robot distances, but not global communication nor global position
data. In Section 4.2 we show how a malicious robot can disrupt Distributed
Swarm DBSCAN by broadcasting incorrect data. In Section 4.3 we present Re-
silient Swarm DBSCAN, which uses a distributed IDRS to identify and block
suspected malicious robots.

4.1 Distributed Swarm DBSCAN

The original (centralized) DBSCAN algorithm is well suited to the case that
clusters lie along mutually disjoint lower dimensional manifolds embedded in a
higher dimensional space. The (original) algorithm works by first creating a d-
disc graph, such that a particular node’s neighbor set N contains all nodes within
distance d of that node. Nodes are defined as being ‘internal’ nodes if |N| ≥ m
neighbors, ‘boundary’ nodes if m > |N| ≥ 1, and ‘outliers’ nodes if |N| = 0,
where m is a user defined parameter. Neighboring internal nodes are defined as
being in the same cluster, while boundary nodes choose membership in one of
their neighbor’s clusters. Outliers are not considered to be in any cluster.
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Distribute Swarm DBSCAN
Initialization Iteration Convergence

Fig. 4. Distributed Swarm DBSCAN. Nodes are defined as ‘internal,’ ‘boundary,’ or outlier depending on if they have, respectively, a number
of neighbors ≥ m, between 1 and m, or 0, respectively, where m is a user parameter. Internal nodes determine their cluster labels using a
distributed consensus algorithm. Boundary nodes take the cluster labels of nearby internal nodes.

The fact that DBSCAN is naturally concerned with neighborhoods on a d-
disc graph makes it well suited for operation on a robot swarm with local com-
munication. The decentralized variant of DBSCAN that we explore—distributed
swarm DBSCAN—simply requires that robots can actually communicate with
all other robots closer than d. That is, we assume that for some physically de-
fined dmax, we are able to run distributed swarm DBSCAN for any d ≤ dmax.
After nodes have determined if they are internal, boundary, or outlier, the inter-
nal nodes run a distributed consensus algorithm to agree on a cluster ID. This
is accomplished by having internal nodes exchange and average randomly cho-
sen integer values with their neighboring internal nodes until the internal nodes
of each cluster have converged. An example of distributed swarm DBSCAN is
depicted in Figure 4.

It is important to note that different clusters may accidentally converge to the
same random value; however, the chances of this happening are small, especially
if the sample space of random integers is many orders of magnitude larger than
the size of the swarm (and the number of clusters). The chance of cluster ID
collisions is relatively low for physical robot swarms (which typically contain 10s
or 100s of robots) that use modern digital computers equipped with 16 or 32
bit unsigned integers (capable of representing 65536 and 4294967296 different
values, respectively).
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Algorithm 11 Distributed Swarm DBSCAN

Require: i /∗ ID of this robot (node) ∗/
Require: d /∗ distance param ∗/
Require: m /∗ min neighbors of internal nodes ∗/
1: initDbscan()
2: loop
3: if received new message M then
4: j ←M.senderID
5: if dji > d then
6: continue
7: N← N ∪ {j}
8: if M.status = internal then
9: Nint ← Nint ∪ {j}

10: Cj ←M.C

11: populateMessageMetaData(M̃)
12: if |N| ≥ m then

/∗ this node i is an internal node ∗/
13: Ci ← integer

((
Ci +

∑
j∈Nint

Cj

)
/(1 + |Nint|)

)
14: M̃.status← internal
15: else if |N| ≥ 1 then

/∗ this node i is a boundary node ∗/
16: j ← closest member of Nint

17: Ci ← Cj

18: M̃.status← bouandary
19: else

/∗ this node i is an outlier node ∗/
20: M̃.status← outlier
21: Broadcast(M̃)

Pseudocode for Distributed Swarm DBSCAN Pseudocode for the dis-
tributed swarm DBSCAN algorithm appears in Algorithm 11. The algorithm
requires as input the parameters d (neighborhood distance) and m (number of
neighbors required to be considered an internal node). Each robot i assumed
to have a unique ID i. Initialization of variables is performed (line 1) using the
subroutine initDbscan(), itself appearing Algorithm 12. Within initDbscan()
this node’s parent is set to empty, its neighbor set N is set to empty, its internal
neighbor set Nint (the set of neighbors that are also internal nodes) is set to
empty, and its random integer Ci is drawn.

Back in Algorithm 11, distributed swarm DBSCAN relies heavily on message
passing to transfer data throughout the swarm. Messages are received (lines 3-4)
and then ignored if they are sent from robots beyond the neighborhood distance
threshold (lines 5-6). Newly discovered neighbors are added to this node’s neigh-
bor set (line 7), internal neighbors are added to this node’s internal neighbor set
(lines 8-9), and the neighbors current (continually converging) cluster ID integer
Cj is stored (line 10).
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Algorithm 12 initDbscan()

1: parent← ∅ /∗ the parent of this node ∗/
2: N← ∅ /∗ this node’s neighbors ∗/
3: Nint ← ∅ /∗ this node’s internal neighbors ∗/
4: Ci ← randomInteger() /∗ random initial cluster number ∗/

Algorithm 13 populateMessageMetaDataB(M̃)

1: M̃.senderID ← i
2: M̃.C ← Ci

The second half of the algorithm focuses on sharing this robot’s data with
other robots (lines 12-21). Message data (this robot’s ID i and current cluster
ID integer Ci) is populated using the subroutine populateMessageMetaDataB()
(line 10), this subroutine is detailed in Algorithm 13. The message is populated
with this node’s current internal, boundary, or outlier status (lines 14, 18, and
20). If this node is an internal node it calculates the new value of its converging
integer (line 13), and if it is a boundary node then it randomly selects the cluster
of its closest neighbor to join (line 16).

4.2 Hacking Distributed Swarm DBSCAN

Unlike the k-Means Algorithm, the proposed distributed swarm DBSCAN algo-
rithm has no centralization that a malicious robot can use to its advantage.

In this paper we explore a DBSCAN attack in which multiple malicious
robots, dispersed throughout the swarm, cause multiple clusters to converge to
the same value. To disrupt clustering, a malicious robot classifies itself as an
internal robot. Then, rather than averaging its cluster label with those of neigh-
boring core robots, the malicious robot repeatedly broadcasts its own constant
cluster label and forces the neighboring core robots to converge to that label.
The final cluster label is the original cluster label of the malicious robots.

If two or more malicious robots are located in different clusters and all ma-
licious robots share the same original constant cluster label, then each clus-
ter containing a malicious robot converges to the same final cluster label. In
this manner, multiple clusters reports the same cluster label and are incorrectly
grouped into a single cluster. A graphical depiction of this attack appears in
Figure 5.

4.3 Resilient Distributed Swarm DBSCAN

The resilient swarm DBSCAN algorithm is depicted in Figure 6. The main differ-
ence between this version and Distributed Swarm DBSCAN is that nodes track
and share sets of suspected bad actors B. The effects of bad actors are reduced
by removing suspected bad actors from neighbor lists so that they cannot in-
fluence the convergent cluster ID integers or the internal, boundary, or outlier
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Hacking Distribute Swarm DBSCAN

Initialization Iteration Convergence

Fig. 5. An malicious attack on Distributed Swarm DBSCAN in which multiple malicious robots are located in different parts of the swarm.
By sending the same values over and over, both clusters containing the malicious robots converge to the same cluster label.

status of other nodes. Bad actors are defined as nodes that have not updated
their convergent values in more than ymax communications, where ymax is a user
defined parameter.

This method of detection has been chosen primarily to enable us to explore
the resilience of distributed swarm DBSCAN variants in the event that bad ac-
tors can be detected. The use of this particular detection method assumes that
malicious robots are naive and simply sends the same bad value over and over. It
is important to note that this method cannot detect malicious robots that send
random numbers or change their value very slowly. However, in the latter cases it
is easy to imagine similar but more involved forms of value analysis that robots
could potentially be used to detect suspicious (non)converging integer values in-
side the subroutines recordBadActorStatistics() and calculateBadActorsB().
The simple method used here is useful because it enables us to compare how de-
tecting malicious robots verses not detecting malicious robots affects algorithmic
performance.

If the cluster label of a neighboring core robot remains constant over a period
of time, the IDRS adds the suspected malicious ID to the malicious robot list—
revoking its participation privileges in the swarm. Like the k-Means IDRS, all
broadcasts from blacklisted robots are ignored. Therefore, the unchanging cluster
label can no longer affect the final cluster label. To undo any effect the malicious
robot may have already caused, the robot re-initializes its cluster label to a
randomly generated value, then rejoins the distributed process of converging to
a cluster label.
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Resilient Distribute Swarm DBSCAN
Initialization Iteration Convergence

Fig. 6. Resilian Swarm DBSCAN incoporates an IDRS by ignoring robots that never change thier data (during the distributed convergence).

However, unlike the k-Means IDRS, the DBSCAN IDRS does not share the
suspected malicious robot list throughout the swarm. Instead, each robot main-
tains its own separate list. To isolate a malicious robot from the swarm, all
neighboring robots must detect it separately (by observing its unchanging clus-
ter value). A robot that has been incorrectly identified as malicious by one robot
will still contribute to the swarms behavior through its other neighbors.

Pseudocode for Resilient Swarm DBSCAN Pseudocode for the resilient
swarm DBSCAN appears in Algorithm 14. Difference vs. the distributed swarm
DBSCAN algorithm are highlighted in blue. The main differences are the cal-
culation of bad actors based on message data (lines 11 and 13), the rejection of
messages from suspected bad actors (lines 7-8), and blocking of bad actors (14)
by removing them from neighbor lists via the subroutine blockBadActors(B).
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17. Götz, M., Bodenstein, C., Riedel, M.: Hpdbscan: highly parallel dbscan. In: Pro-
ceedings of the workshop on machine learning in high-performance computing en-
vironments. pp. 1–10 (2015)

18. Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence
1(2), 95–113 (2007)

19. Higgins, F., Tomlinson, A., Martin, K.: Threats to the swarm: Security considera-
tions for swarm robotics. International Journal on Advances in Security 2 (2009)

20. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A new privacy-preserving
distributed k-clustering algorithm. In: Proceedings of the 2006 SIAM international
conference on data mining. pp. 494–498. SIAM (2006)

21. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: Proceedings of the eleventh ACM SIGKDD in-
ternational conference on Knowledge discovery in data mining. pp. 593–599 (2005)

22. Jouini, M., Rabai, L.B.A., Aissa, A.B.: Classification of security threats in infor-
mation systems. Procedia Computer Science 32, 489 – 496 (2014), http://www.
sciencedirect.com/science/article/pii/S1877050914006528

23. Kolias, C., Kambourakis, G., Maragoudakis, M.: Swarm intelligence in intrusion
detection: A survey. Computers & Security 30(8), 625 – 642 (2011), http://www.
sciencedirect.com/science/article/pii/S016740481100109X

24. Laing, T., Martin, K., Ng, S., Tomlinson, A.: Security in Swarm Robotics, pp.
42–66. IGI Global (Dec 2015)

25. Liang, Y., Balcan, M.F., Kanchanapally, V.: Distributed pca and k-means cluster-
ing. In: The Big Learning Workshop at NIPS. vol. 2013. Citeseer (2013)

26. Ling, R.F.: On the theory and construction of k-clusters. The Computer Journal
15(4), 326–332 (01 1972), https://doi.org/10.1093/comjnl/15.4.326

27. Ling, S., Yunfeng, Q.: Optimization of the distributed k-means clustering algorithm
based on set pair analysis. In: 2015 8th International Congress on Image and Signal
Processing (CISP). pp. 1593–1598. IEEE (2015)

28. Liu, J., Huang, J.Z., Luo, J., Xiong, L.: Privacy preserving distributed dbscan
clustering. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops. pp. 177–
185 (2012)

29. Liu, Q., Fu, W., Qin, J., Zheng, W.X., Gao, H.: Distributed k-means algorithm
for sensor networks based on multi-agent consensus theory. In: 2016 IEEE Interna-
tional Conference on Industrial Technology (ICIT). pp. 2114–2119. IEEE (2016)

30. Liu, S., Dou, Z.T., Li, F., Huang, Y.L.: A new ant colony clustering algorithm
based on dbscan. In: Proceedings of 2004 International Conference on Machine
Learning and Cybernetics (IEEE Cat. No.04EX826). vol. 3, pp. 1491–1496 vol.3
(2004)

31. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants.
In: Proceedings of the third international conference on Simulation of adaptive
behavior: from animals to animats 3: from animals to animats 3. pp. 501–508
(1994)

32. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

33. Mao, Y., Xu, Z., Li, X., Ping, P.: An optimal distributed k-means clustering algo-
rithm based on cloudstack. In: 2015 IEEE International Conference on Information
and Automation. pp. 3149–3156. IEEE (2015)

34. McCune, R., Madey, G.: Decentralized k-means clustering with manet swarms. In:
Proceedings of the 2014 Symposium on Agent Directed Simulation. pp. 1–8 (2014)



Suplimentary Material 27
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