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A Additional Experiments

A.1 Driving Domain

We also evaluate our method on a driving domain. In this problem, the vehicle is
attempting to make an unprotected left turn, and there is both cross and oncoming traffic.
An example of this domain is depicted in Figure 9.

Fig. 9. The robot (blue trapezoidal vehicle) making an unprotected left turn along the dotted white
curve. Each obstacle (red rounded vehicles) exists in space-time and has uncertain speed. There is
cross traffic going to the right blocking the robot’s path before entering the intersection, oncoming
traffic going downwards blocking the robot’s path before exiting the intersection, and an obstacle
vehicle in front. The robot must choose when it is safest to cut between vehicles, keeping in mind
that going too fast risks collision with the front vehicle. There are a total of 12 obstacle vehicles.

The geometric curve the vehicle will follow is fixed, but the vehicle has the option
to proceed forward or wait at each timestep. Hence, the graph is a 2D lattice where
one dimension is progress along the curve (40 steps) and the other dimension is time
(100 timesteps). This graph is fed as input to the graph search algorithms, each of
which returns a trajectory that indicates when the robot should be moving and when
it should be stopping. Practically speaking, a solution trajectory makes two choices:
which vehicles to cut between when entering the intersection, and which vehicles to cut
between when leaving the intersection. The performance of these methods are compared
in Figure 10. We also measured the effect of the collision horizon on these performance
metrics, depicted in Figure 11. We find that M0 and running MCR on sampled obstacles
produce plans of similar quality, although M0 is significantly faster. As before, setting
the shadows to be equal is suboptimal in nearly all of the problems in this domain
because there are too many obstacles, so it must choose an overly conservative shadow
for each one. Overall, M1 appears to be the most generally attractive option, as it is
optimal in every instance, although in this domain increasing the collision horizon does
not appear to increase runtime significantly.
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Fig. 10. The optimality rate (percent of problem instances where the algorithm returns an optimal
solution), runtime, and planning risk of each method. Runtime and cost are depicted as the
difference compared to the optimal planner M12 to control for the variance between problem
instances.
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Fig. 11. The optimality and planning risk of Mh for each collision horizon. Cost is depicted as the
percent difference compared to the optimal planner M12 to control for the variance in difficulty
between problem instances. There was no significant difference in runtime across different values
of h, so the runtime graph is omitted. Increasing the collision horizon past 6 shows no noticeable
change in behavior, so we have cropped the graphs for clarity.
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A.2 Minimum Constraint Removal for Manipulation Planning
We also evaluate our algorithm as a minimum constraint removal planner. Our experimen-
tal domain is identical to the one in Section 4.1, but the obstacles are deterministic and
the task is instead to find the path with the fewest collisions. This task is very practically
relevant in manipulation planning domains to determine which obstacles must be moved
out of the way in order to perform a given operation.

As described before, Hauser [9] presented two algorithms, a greedy planner and
an exact planner, which are equivalent to M0 and M24, respectively (note that M24 is
equivalent to M∞ when there are at most 24 obstacles). Our algorithm is compared for
different settings of the collision horizon in Figure 12.
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Fig. 12. The optimality, runtime, and planning risk of Mh for each collision horizon. Runtime
and cost are depicted as the difference compared to the optimal planner M24 to control for the
variance in difficulty of different problem instances. Increasing the collision horizon past 6 up to
24 shows no noticeable change in behavior, so we have cropped the graphs for clarity.

Similar to minimum-risk planning, we find that M0 is already near optimal, and that
M1 closes the gap. As a result, it is unclear whether the collision horizon is bounded
for this domain, or if it is just highly likely to be small. As before, M1 strikes a good
balance of optimal performance and quick runtime.

B Step-by-step Example of Algorithm

B.1 Problem Setup
Here we walk through a step-by-step example of running Algorithm 1 on a small problem.
Suppose we have a graph with vertices v1, v2, v3, v4 and edges

e1 = (v1,v2)

e2 = (v1,v3)

e3 = (v2,v3)

e4 = (v3,v4)

e5 = (v3,v2)

(1)

Then let there be 2 obstacles o1 and o2, each with two risk levels of .01 and .05, where

fo1({e1}) = fo1({e3}) = fo1({e4}) = fo1({e5}) = .05

fo1({e2}) = fo1({e4}) = 0

fo2({e2}) = .01

fo2({e1}) = fo2({e3}) = fo2({e4}) = 0

(2)
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B.2 Algorithm Execution

We will now walk through M1 starting at s = v1 and ending at t = v4. The referenced
psudeocode may be found in Algorithm 1.

Iteration 1 We start with an empty closed set (line 1) and an open set containing the
start vertex v1 (line 2). When we enter the main loop (line 3), we assign u = v1 with
empty τ and C (line 8). u ̸= t, and so we do not end here (line 9).

Now we get to line 16. The closed set is empty, and so the first clause evaluates to
true since there does not exist any (w, C ′′) in closed. For the second clause, we can
set M = {} ≤ C, which satisfies |M | ≤ 1 and also there not existing any (w, C ′′) in
closed. Hence, the overall predicate evaluates to true.

We then add (v1, {}) to the closed set (line 17). For outgoing edge e1 (line 19),
we set C ′ = {(o1, .05)} (line 20) and add (v2, [e1], C

′) to the open set with key .05
(line 21). For outgoing edge e2 (line 19), we set C ′ = {(o2, .01)} (line 20) and add
(v3, [e2], C

′) to the open set with key .01 (line 21).
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Fig. 13. End of iteration 1.

The set of closed states at the end of this iteration is depicted in Figure 13.

Iteration 2 Now we come back to the top of the main loop (line 3). We assign u = v3

with τ = [e2] and C = {o2, .01} (line 8). u ̸= t, and so we do not end here (line 9).
There is no closed state at vertex v3, and so the predicate evaluates to true (line 16).
We then add (v3, {(o2, .01)}) to the closed set (line 17). For outgoing edge e4 (line

19), we set C ′ = {(o1, .05), (o2, .01)} (line 20) and add (v4, [e2, e4], C
′) to the open set

with key .06 (line 21). For outgoing edge e5 (line 19), we set C ′ = {(o1, .05), (o2, .01)}
(line 20) and add (v2, [e2, e5], C

′) to the open set with key .06 (line 21).
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Fig. 14. End of iteration 2.

The set of closed states at the end of this iteration is depicted in Figure 14.

Iteration 3 We come back to the top of the main loop (line 3). We assign u = v2 with
τ = [e1] and C = {o1, .05} (line 8). u ̸= t, and so we do not end here (line 9).

There is no closed state at vertex v2, and so the predicate evaluates to true (line 16).
We then add (v2, {(o1, .05)}) to the closed set (line 17). For outgoing edge e3 (line

19), we set C ′ = {(o1, .05)} (line 20) and add (v3, [e1, e3], C
′) to the open set with key

.05 (line 21).
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Fig. 15. End of iteration 3.

The set of closed states at the end of this iteration is depicted in Figure 15.
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Iteration 4 Now we come back to the top of the main loop (line 3). We assign u = v3

with τ = [e1, e3] and C = {o1, .05} (line 8). u ̸= t, and so we do not end here (line 9).

There is only closed state (v3, {(o2, .01)}) at vertex v3. {(o2, .01)} ̸≤ C and we
can set M = C satisfying |M | ≤ 1 and M ̸≤ {(o2, .01)}. Therefore, the predicate
evaluates to true (line 16).

We then add (v3, {(o1, .05)}) to the closed set (line 17). For outgoing edge e4 (line
19), we set C ′ = {(o1, .05)} (line 20) and add (v4, [e1, e3, e4], C

′) to the open set with
key .05 (line 21). For outgoing edge e5 (line 19), we set C ′ = {(o1, .05)} (line 20) and
add (v2, [e1, e3, e5], C

′) to the open set with key .05 (line 21).
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Fig. 16. End of iteration 4.

The set of closed states at the end of this iteration is depicted in Figure 16.

Iteration 5 We come back to the top of the main loop (line 3). We assign u = v2 with
τ = [e1, e3, e5] and C = {o1, .05} (line 8). u ̸= t, and so we do not end here (line 9).

There is only closed state (v2, {(o1, .05)}) at vertex v3. {(o1, .05)} ≤ C and so the
predicate evaluates to false (line 16).

Because we did not need to expand this state, the closed set remains unchanged, and
so it is still as depicted in Figure 16.

Iteration 6 Finally, we reach the top of the main loop (line 3) with u = v4, τ =
[e1, e3, e4] and C = {o1, .05} (line 8). u = t, and so we return the solution [e1, e3, e4]
(line 9).
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Fig. 17. End of iteration 6.

The set of closed states at the end of this iteration is depicted in Figure 17.

C Theoretical Guarantees for Motion Planning

While motion planning has been shown to be PSPACE-hard [23], the community has
developed algorithms which are able to solve many practical motion planning problems.
Even though we cannot guarantee that any algorithm is both efficient (polynomial time)
and complete (guaranteed to find a solution), we can provide lighter guarantees. The
goal of this section is to provide background on different theoretical guarantees relevant
to motion planning with obstacle uncertainty.

C.1 Completeness

An algorithm is said to be complete if it is always able to find a solution if one exists.
Unfortunately, many algorithms which depend on heuristics are not complete and can
fail in certain scenarios. For example, optimization based motion planners can fail to
find a solution if they are not initialized with a trajectory whose homotopy class contains
a valid trajectory.

When working with sampling based motion planners, we work with a criteria known
as probabilistic completness, a property introduced with the RRT algorithm [16]. While
we cannot guarantee that any algorithm efficiently returns a valid solution if one exists,
we can ensure the algorithm is probabilistically complete.

Definition 9 (Probabilistically Complete Motion Planning Algorithm). A motion
planning algorithm takes a set of obstacles, a start state s, and a goal state t as input
and generates a trajectory that does not intersect any obstacle as output. A planning
algorithm is probabilistically complete if, with n samples, the probability that it finds a
safe trajectory approaches 1 as n approaches ∞.
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Probabilistic completeness essentially means the algorithm will eventually find a solution
if one exists.

Many sampling based algorithms, including RRTs, guarantee probabilistic complete-
ness as long as there exists a solution that meets certain conditions. In particular, RRTs
and many other sampling based motion planners are only probabilistically complete if
there exists a solution trajectory in the topological interior of free configuration space.
Since a similar condition is necessary for the algorithm presented in this paper, we
develop this condition without explicitly relying on topology below.

This condition can be articulated as the existence of a path in the δ-interior of the
free space Xfree where Xfree is a bounded subset of Rn.

Definition 10 (δ-interior [13]). A state x ∈ Xfree is in the δ-interior of Xfree if the
closed ball of radius δ around x lies entirely in Xfree.

A sampling based algorithm can only succeed if it always has a non-zero probability of
sampling a waypoint leading to more progress. One way to ensure this is requiring the
existence of a solution where every waypoint has a ball of nonzero diameter around it,
guaranteeing that said ball has non-zero measure and the algorithm will eventually draw
a sample in said ball.

When there exists a path in the δ-interior of free space for some δ > 0, many sampling
based motion planners are probabilistically complete. However this formulation does not
extend well to the domain with uncertain obstacles; there is no concept of “free space”
because the locations of the obstacles are not known. Instead we will use the equivalent
view of inflating the path instead of shrinking the free space.

Definition 11 (δ-inflation). The δ-inflation of the set X is the set Y =
⋃

x∈X

{y |

d(x, y) ≤ δ}, where d(x, y) is any distance metric.

We note that in the deterministic setting, if a trajectory is in the δ-interior of Xfree,
then the δ-inflation of the trajectory is entirely in Xfree. This allows us to consider
problems with the following regularity condition: there exists a δ-inflated trajectory that
has a low risk of collision.

Definition 12 (ϵ-safe δ-inflated trajectory). A trajectory τ is an ϵ-safe δ-inflated tra-
jectory if its δ-inflation intersects an obstacle with probability at most ϵ.

While the standard RRT requires the existence of a trajectory in the interior of free
space in order to be probabilistically complete, the algorithm in this paper requires the
existence of an ϵ−safe δ−inflated trajectory in order to be probabilistically complete.

C.2 Graph Restriction Hardness

When solving motion planning without uncertainty, once the algorithm has identified
a graph that contains a solution, the problem is essentially solved. Algorithms like
Djikstra’s algorithm and A⋆ can be applied out of the box to find the minimum cost path
within said graph.

We refer to the hardness of finding a solution restricted to a graph the graph restriction
complexity of a problem. Since we can apply Djikstra’s algorithm to solve motion
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planning without uncertainty, the graph restriction complexity is P . This is crucial to
enabling the fast solving of motion planning in practice. Sampling based planners tackle
the problem in two [sometimes alternating] phases. The first phase involves sampling a
graph. The second involves checking if the graph contains a solution, and finding the
lowest cost one if it does. Motion planning problems that are “easy” for sampling based
planners are ones where the first phase is easy. The hardness of the second phase is
exactly the graph restriction complexity.

One could hope that with the right approximations, a similar pattern could work
for motion planning with obstacle uncertainty. In [3], the authors develop a notion of
confidence intervals around obstacles with the aim of using them as an approximation
enabling efficient planning. Unfortunately, the graph restriction complexity of planning
with obstacle uncertainty with shadows is still NP-hard, even in two dimensions [25]. In
other words, even if you are able to efficiently identify a graph containing the solution, it
is not easy to find the solution in this graph unless P=NP.

This paper presents an algorithm that shows that the graph-restriction complexity
of MRMP is P when the collision horizon is constant. Under these conditions, the
same paradigm as for standard motion planning applies. One can sample a graph in
configuration space just like with a standard sampling based motion planner and then
use the presented graph search algorithm in order to solve MRMP. This allows us to
adapt the standard sampling based motion planners to be able to solve MRMP.

D Proofs

Proof of Theorem 4:

Proof. Let ϵ be the associated cost of the trajectory generated by Mh(G,O, s, t) and let
τ∗ be any optimal trajectory, with associated cost ϵ∗. Because each obstacle is distributed
independently from other obstacles, we begin by considering the risk incurred by each
one separately. For a given obstacle o, suppose S

(τ∗)
o is the trajectory τ∗ split into the

fewest segments such that for each τi ∈ S
(τ∗)
o , H(τi)

o ≤ h. For each time τi enters an
obstacle level with edge (u, v), the planning tree generated by Mh must contain a state
ŝu at vertex u with memory containing the preceding h collisions in τi since such a state
is reachable (given that τi reaches it) and would not be skipped unless another previously
closed state at u already contained the preceding h collisions. Because H

(τi)
o ≤ h, we

know that the preceding h collisions are sufficient to determine the marginal risk of each
collision. Then Mh will at some point expand edge (ŝu, ŝv), where ŝv is the state at
vertex v still with memory containing the preceding h collisions in τi and with cost from
o no more than fo(τi). Hence, Mh computes the marginal risk of this obstacle for this
subtrajectory correctly. Then the total computed risk from obstacle o for trajectory τ∗ is
at most ∑

τi∈S
(τ∗)
o

fo(τi)

Hence, the algorithm would assign the overall risk of trajectory τ∗ as at most

ϵ̃ ≤
∑

o∈O,τi∈S
(τ∗)
o

fo(τi)
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Because Mh greedily expands nodes in order of computed cost, it would only select a
different trajectory if its computed cost ϵ̂ ≤ ϵ̃. We know that Mh can only overestimate
the cost of a trajectory (due to not taking into account the optimal set of past collisions),
not underestimate, so the cost of the trajectory it returns is at most ϵ̂. Finally, since
fo(τ∗) = max

τi∈S
(τ∗)
o

fo(τi) and

ϵ∗ =
∑
o∈O

fo(τ∗) =
∑
o∈O

max
τi∈S

(τ∗)
o

fo(τi)

we are left with the following bound:

ϵ ≤ ϵ̂ ≤ ϵ̃ ≤ ϵ∗ +
∑
o∈O

(|S(τ∗)
o | − 1)fo(τ∗)

E Additional Runtime Analysis

Although the runtime of the exact algorithm (i.e. Mk) has poor asymptotic complexity
according to our analysis, in our experiments we observe that in practice it seems to not
be that much slower than the approximate versions. We would like to investigate why
that would be the case, since it is a surprising result.

We define an extension of the irreducible constraint removal (ICR) defined by Hauser
[9] for MCR domains.

Definition 13 (minimal reachable memory (MRM)). A memory C is a minimal reach-
able memory for a configuration u if there exists a trajectory from the initial configuration
s to u that does not collide with any shadow not in C, and there is no lower memory
C ′ < C such that there exists such a trajectory that does not collide with any shadow
not in C ′.

Hauser [9] observe that the pruning of non-ICR states eliminates a large number of states,
leading to practical efficiency for many MCR problem instances. In our algorithm, we
prune non-MRM states (note that when using our algorithm as an MCR planner, this is
equivalent to pruning of non-ICR states), so we would like to quantify how much of an
effect the pruning has on the overall runtime.

Let U denote the set of risk memories associated with all states for configuration
u that are expanded by Mk. Suppose C1, C2 ∈ U , and Mk expanded C1 before C2. If
C1 ≤ C2, then C2 would not have been expanded since (u, C2) is a strictly worse state
than (u, C1), hence a contradiction. But if C2 ≤ C1, then C2 would have been expanded
before C1, which is also a contradiction. Therefore, C1 and C2 are incomparable, and so
U is an antichain.

For the purpose of simplifying the following math, we will continue only for the case
where L = 1 (i.e. equivalent to MCR), but we believe the general orders of magnitude
of the effect to be similar for larger L. In this case, the maximum antichain is the set
of subsets of size k

2 , which has size
(
k
k
2

)
. However, the actual antichain the algorithm

produces is usually much smaller.
One reason is that it selects ICR sets rather than those in the maximum antichain.

If most ICR sets have size approximately λ, then the size of U would be reduced to
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approximately
(
k
λ

)
. This is the extent of the effect of pruning on the runtime, and it does

not appear to sufficiently explain the low runtime we see in practice (in the boxes MCR
domain, we see typical ICR sizes of on the order of around 8, which would still suggest
a hundreds-of-thousands-fold runtime multiplier over the greedy algorithm).

We speculate that the topology of the obstacle placements induce additional con-
straints on which memories are reachable. For example, if the obstacles are arranged
into a 2D grid, you would not be able to reach a shadow in the corner without also
reaching some set of shadows in-between. Computational experiments suggest that this
would reduce the size of U to a manageable number for the size of problems we have
shown here, Exact counts for an MCR domain where s and t are δ cells apart and the
algorithm is limited to reaching ∆ obstacles (e.g. due to the algorithm terminating upon
reaching the goal by passing through ∆ obstacles) shown in the below table. Beyond the
boundaries of the table, we expect that the size of U has asymptotic complexity at least
o
(
δpoly(∆−δ)

)
.

∆
8 9 10 11 12

6 31 31 203 203 823
7 1 43 43 375 375

δ 8 1 1 57 57 647
9 0 1 1 73 73

10 0 0 1 1 91

We expect the boxes domain to exhibit similar properties due to the dense placement
of the obstacles (we estimate that in the boxes MCR domain the goal is reached with cost
around 10 and the average obstacle is reached with cost around 8), although likely in
an inexact manner. A potential line of future work could be to analytically quantify the
impact of the obstacle topology on the runtime of the algorithm, and determine whether
that sufficiently explains the empirically low runtime we have observed. Additionally,
it would be helpful to evaluate the runtime of our algorithm on problems where δ and
∆ − δ are much larger to see if it continues to be efficient. This would also provide
further intuition as to what is driving the hardness of the general problem, and which
special cases can be solved efficiently when an exact solution is required and the collision
horizon is unknown.


