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Abstract. Motion Planning is widely acknowledged as a fundamental
problem of robotics. Due to the continuous efforts of the scientific com-
munity, various algorithmic families emerged that have different strengths
and weaknesses. Finding a suitable motion planning program is often not
trivial for real-world problems, as various domain-specific factors must
be considered. An obvious example is a potential trade-off between path
length, computation time, and resource constraints. We propose a tech-
nique to systematically explore the space of suitable programs, aiming to
find Pareto optimal algorithm configurations. Our approach makes use
of Combinatory Logic Synthesis to perform component-based software
composition. Software components are injected with domain-knowledge,
effectively restricting the solution space of synthesizable programs. We
synthesize sample-based global planning programs that make use of the
Open Motion Planning Library (OMPL) and evaluate the produced pro-
grams to yield numeric result vectors. These steps are encapsulated in
a black-box function which is used with a multi-objective optimization
tool (Hypermapper) to yield an automatic, learning-based search proce-
dure for a given feature space. We validate our approach with a series of
experiments that demonstrate the extensibility and transferability of our
methodology regarding different robotic systems and planning instances.

1 Introduction

Motion planning aims to find a continuous path for a movable object from a
starting configuration state to a goal state while avoiding obstacles. The general
piano movers problem was proven to be PSPACE-hard [27], and additional re-
quirements of real-life applications and the high-dimensional configuration space
of the moving object (in the following assumed to be a robot) form the need for
various heuristics.

Sampling-based motion planning is a class of heuristics that operates by
relaxing the completeness property (finding a path if such path exists) to prob-
abilistic completeness (finding a path if such path exists when executing infinite
iterations). This is relevant for solving challenging problems in practical appli-
cations with high-dimensional planning domains. In this work, we perform a
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search in the space of global sampling-based motion planning programs with
path post-processing. The domains of interest include geometric planning for
rigid bodies in the special Euclidean group SE(3) and planning in real vector
spaces representing states of robotic arms. The considered family of planning
algorithms performs searches by generating samples in the robot’s configuration
space, checking their validity for a known, static environment, and building a
graph representing the free configuration space. Sampling-based motion plan-
ning algorithms are often asymptotically optimal as the solution path converges
to a global optimum with a growing number of iterations. In practice, limited
computation time prevents optimal planning results. However, these results can
be used as an initial solution that is supplemented by local planning techniques
to smooth and simplify paths [8] or account for dynamic changes in the environ-
ment [6]. Real-life applications often introduce the need for specialized planners
with specific characteristics, such as their suitability for narrow passages [16]
or real-time optimal motion planning capabilities in dynamic environments [32].
Consequently, the variety of planners grows continuously, and finding a suitable
planning approach for a given problem can be challenging.

Thus, we introduce a novel automated configuration approach for planning
programs by using Combinatory Logic Synthesis (CLS) and subject the space of
configurable programs to an exploration procedure. The main contribution of the
present paper is twofold. First, we apply component-based synthesis to sampling-
based motion planning. Second, we incorporate an optimization procedure by
embedding CLS into an active learning loop.

The strength of the CLS approach lies in its ability to automate the assem-
bly of multiple variants of complete programs by composing existing software
artifacts (referred to as combinators in CLS). In software engineering terms,
we automatically generate members of a product line [12] from repositories (li-
braries) of components. In our application to motion planning we are able to
automatically generate families of planner programs using the Open Motion
Planning Library (OMPL [31]) to form a set of combinators that represents
building blocks for planners, samplers, and further code artifacts that are re-
quired for setting up an executable planning program. Our planner combinators
implement code templates which are used by CLS to generate meaningful Python
code. The family of generated programs can be extended by adding new combi-
nators to the repository without any need to change existing parts of the system.
The automated generation of programs with CLS incorporates a modular and
flexible way of specifying the space of valid program variations, which captures a
user-defined design space of motion planning programs. A valid variant complies
with the rules of composition defined by the user. In sampling-based motion
planning, these rules might consider admissible combinations of planning algo-
rithms and sampling strategies. Moreover, the algorithmic variations can involve
problem-specific adaptions. For instance, some planning problems require spe-
cialized techniques to find valid samples in the configuration space. Thus, they
mandate the use of components implementing a suitable technique.
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The repository forms an algorithmic space that enables the use of optimiza-
tion procedures to find valid structural variances instead of performing a search
procedure on numerical parameters. For this purpose, we define a feature vector
that represents points in the feature space of sampling-based motion planning
programs. We use CLS to resolve points of this space and generate programs that
comply with the given algorithm configuration. We consider motion planning as
a multi-objective optimization problem subject to an optimization procedure.
This approach requires an optimization technique that is capable of black-box
optimization and supports categorical variables. For these reasons, we chose the
optimization tool Hypermapper [22] to perform experiments for single query
planning tasks for specific problem instances. Our approach finds a Pareto front
that can be analyzed to reason about the suitability of algorithmic families for
a given problem instance. The approach might be a step towards an evaluation
platform of use to developers and researchers. We hope that the observation of
performance characteristics compared to existing artifacts can support further
development of planners, samplers, or collision detection techniques.

2 Related Work

2.1 Type-Directed Synthesis

Software synthesis – producing a program from a high-level specification – is an
active field of study in computer science [10]. In type-directed synthesis, types
are used for the high-level description of programs and for guiding the synthesis
process. However, this technique is limited to small functional programs and,
to the best of our knowledge, has not been used to solve non-trivial motion
planning problems. In our novel approach, we apply the CLS framework [24,
5] which is type-directed but also component-oriented [26]. While many synthe-
sis approaches require synthesizing software from scratch (i.e., producing the
entire code without any human intervention), component-oriented techniques
use pre-existing components as building blocks. Components may be manually
engineered, e.g., to be readable and efficient, and components can encapsulate
logic that is otherwise infeasible to formally specify. Semantic type expressions
extend standard program types to expose what components do instead of de-
scribing how they do it. The CLS framework, which will be described in more
detail in Section 3.3, can handle a broad set of application domains ranging
from small-scale software composition [2], large-scale software product lines [3,
11, 4], to schedule-oriented planning and factory planning [9, 33]. Recent studies
demonstrate the applicability of CLS for engineering disciplines such as ware-
house simulation modeling [19] or tool path planning for machining operations
[30]. While being a type-directed framework, the programming language of CLS
(Scala) does not limit the programming language usable in target artifacts. In-
stead, CLS enables components to act as code generators of arbitrary languages,
which is crucial for the generated code (in our case, Python using C++ bindings)
to access comprehensive motion planning libraries. It does not apply a synthesis
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algorithm to find a plan but instead composes families of specialized algorithmic
configurations to solve the problem.

2.2 Learning and Design Space Exploration

The challenge of having a high-dimensional solution space for a given problem
is widespread. As a result, a standard method is to do a design space explo-
ration to find suitable solutions. Because it is expensive to do a full exploration,
approaches like machine learning are used to find suitable solutions [35, 7]. For
example, Ipek et al. trained an artificial neural network with a small sample of
design space points as training data to create an approximation of the design
space to predict other points’ results with high accuracy [17]. Another approach
by Hosny et al. uses reinforcement learning to generate a flow of logic synthesis
optimizations from a set of transformation algorithms without human interac-
tions [14]. In the motion planning domain, Morales et al. use machine learning
to find regionally optimal algorithms, based on spatially varying features of a
given environment [21]. Saeedi et al. use design space exploration to select from
four different design spaces to find suitable SLAM algorithms [28]. In contrast,
we use a combination of machine learning techniques to select from an algorith-
mic feature space of software components and synthesis techniques to generate
suitable programs. Xiang et al. provide a novel approach to sample algorithm
configurations for large software product lines [34]. They use SAT solvers to find
an initial set of valid sample points (i.e., algorithm configurations) and a search
procedure that uses a distance metric to build a uniform sampling set incremen-
tally. The resulting samples are a reduced representation of the software product
line, enabling the application of techniques such as optimization procedures or
performance prediction. Jamshidi et al. proposed a concept to explore the space
for self-adapting robot configurations [18]. A machine learning procedure deter-
mines potential Pareto optimal configurations regarding localization error and
estimates for energy consumption. In contrast, our approach examines algorith-
mic spaces as CLS can describe large design spaces and synthesize runnable
programs. Moreover, we study the application of a black-box optimization pro-
cedure to the domain of sampling-based motion planning programs, which has
not been examined before.

3 Preliminaries

3.1 Multi-Objective Optimization Problem

The multi-objective optimization problem (MOP) is an optimization problem
to find optimal solutions regarding multiple (possibly conflicting) optimization
criteria. The problem can be formalized as finding x to minimize

f (x) = ( f1(x), . . . , fm(x)) (1)

where x is a point from the feature space X and f : X → Rm is an objective
function mapping from the feature space X to objective space Rm. Each of the m
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vector components is a function defining the value for an optimization criterion
at a given point in the feature space. Because of the possible conflicts between the
criteria, it is unlikely to find only one optimal point. Instead, a MOP requires
searching a set of dominating points. A point x1 dominates another point x2
written x1 ≺ x2 precisely if

∀i ∈ 1, . . . ,m : fi(x1)≤ fi(x2) and ∃ j ∈ 1, . . . ,m : f j(x1)< f j(x2) . (2)

If any other point does not dominate a point, it is called Pareto optimal. The set
of all Pareto optimal points is called Pareto set, and the image of this set under
f is called Pareto front. For our study, we defined the following four dimensions
for X: (1) planner, (2) sampler, (3) motion validator, and (4) maximal allowed
planning time. The planner describes an algorithm, the sampler provides config-
uration space samples for the given algorithm, and the motion validator checks if
a linear motion of the robot involves collisions with the environment. The objec-
tive space is defined by the three objectives: (1) averaged solution path length,
(2) averaged computation time, and (3) number of failed computation attempts.
Planner, sampler, and motion validator are feature dimensions represented by
categorical variables. The maximal allowed planning time, on the other hand,
is a numerical variable. It is used to specify a termination condition that will
cause a planning program to stop the execution after the given amount of time.
That way, we can compare optimizing planners with other geometric planners
that terminate instantly when a first valid solution is found.

3.2 Black-Box Optimization

It is common to determine the Pareto front for a given objective function by
using analytical methods. In our case, the algorithmic feature space of motion
planning algorithms lacks derivative information, which prevents using these
methods. Black-box optimization (also referred to as derivative-free optimiza-
tion) is a technique that requires only objective function values. To solve the
multi-objective optimization problem, we use HyperMapper [22]. The frame-
work determines the Pareto front for a given multi-objective function by using
multiple random forests to learn a model abstracting the MOP function. The
model is then used to find the Pareto front by determining an initial front in
the warm-up phase. The active learning phase consists of multiple iterations of
two steps. First, the model is improved based on the determined Pareto front.
If possible, the Pareto front is improved in the second step.

3.3 Combinatory Logic Synthesis

The underlying formalism of CLS is combinatory logic [13] with intersection
types [25, 5, 1]. Synthesis in CLS is guided by the three rules of the type system
depicted in Equation 3.

Γ (x) = A
Γ ⊢ x : A

(Var)
Γ ⊢ M : A A ≤ B

Γ ⊢ M : B
(≤ )

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

(MP) (3)
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Types are assigned by the ternary relation ⊢, where the first place is a col-
lection of combinators, Γ , the second place is the term, which can either be a
combinator x or an application of terms MN and the third place is the type to
be assigned. The first rule (Var) allows using any component in a repository
of combinators Γ , where we write Γ (x) = A if the repository holds information
that combinator x has type A. The second rule allows casting types from spe-
cial to general according to a preorder ≤, the rules of which coincide with a
set-theoretic view of types. That is: types are considered to classify sets of pro-
grams, and the preorder ≤ on types reflects the inclusion preorder ⊆ on sets.
We have A ≤ B precisely if the set of programs classified by A is included in the
set of programs classified by B. Finally, the rule of modus-ponens (MP) allows
applying functions A → B to arguments of type A, where the result of function
application MN will have type B. For these rules, CLS solves the problem of rela-
tivized type inhabitation [25]: Given a repository Γ and a target type A, find the
terms M (called inhabitants) such that Γ ⊢ M : A. Combinators in Γ can then
be interpreted as programs and their application as function calls. Note that
this setting does not mention the language in which programs (combinators) are
written. This allows CLS to be language agnostic. In practice, programs of CLS
are code generators for programs in any other language, in our case Python.
Their types consist of two parts. The first part, called native type, is the type of
the code generator, which is programmed in Scala. The second part, called se-
mantic type, is an additional domain-specific classification. These two parts are
combined by the intersection type operation A∩B. Semantically, the type A∩B
classifies all the programs in the intersection of the sets of programs classified
by type A and type B. Since the repository Γ is user-specified and intersections
only add further restrictions on the number of programs classified by a type, it
is possible to add semantic information freely. This way, the user can express
a domain-specific taxonomic structure without adhering to the rigid and more
generic rules of native programming language type systems. An example for this
will be explained in Section 4.1, where additional semantic types classify sets
of programs representing different motion planning algorithms. The algorithmic
details are available in the literature [25, 1], and beyond the scope of this paper.

4 Architectural Overview

Fig. 1 displays a schematic overview of the parts used to perform the search for
Pareto optimal planning programs. The main parts are the active learning loop
and the black-box function designed for this study.

A set of categorical variables is defined based on the dimensions of the fea-
ture space, forming the search space for the optimization problem at hand. The
active learning loop provided by the Hypermapper guides the traversal of the
search space. It uses regression and classification models to select specific sam-
ples in the search space, which are transformed to an n-tuple and used as an
argument for the black-box function. When executed, this function yields a real
vector that contains values for the path length, computation time, and the num-
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Tabular
Evaluation Report

Hypermapper 2.0:
Design of Experiment,
Active Learning Loop

Algorithm Feature
Space Definition

Black-box Function (Inhabitation + Evaluation)

OMPL: Code
Templates and
Configuration

Result Vector
(averaged over

executed instances)

Execution of Multiple
Program Instances

Python Program

Γ0: Combinator
Implementations

Customized
Repository Γ

CLS
Inhabitation Request:

Γ ⊢ ? : τ

Inhabitation Result

Input Algorithm
Configuration x ∈ X

Algorithm Feature
Model

Fig. 1. Overview of the approach: Hypermapper selects samples from the algorithm feature space.
Samples are forwarded into the black-box function, which generates Python programs that are
executed to obtain evaluation information that is fed back to close the learning-loop.

ber of failed computation attempts. The resulting artifact is a tabular output
of the iterations that are plotted, filtering invalid attempts. The black-box func-
tion generates and runs the Python program for a given algorithm configuration
and problem instance. Every iteration, a new repository Γ is dynamically built
from the general repository Γ0, which contains all combinator implementations.
A point in the feature space only requires a subset of Γ0, and the new special-
ized repository Γ will only contain relevant combinators. The inhabitation looks
for well-typed terms that represent planning programs and can be built from
this generated repository. In general, CLS allows the enumeration of multiple
terms that comply with the target specification. For these specialized reposito-
ries only one inhabitant is found due to the restricted combinator selection. If
a requested point in the feature space does not comply with the domain knowl-
edge encoded in the combinator types, CLS yields an empty inhabitation result.
This case may occur when the planner does not support the requested sampler.
For instance, some planners rely on space sampling and do not use valid space
sampling, which we determined by reviewing the OMPL code for every plan-
ner. The black-box function exposes invalid samples based on the inhabitation
result, to allow the optimizer to proceed with space-exploration. Multiple plan-
ning program instances are executed to compute the average-case running time
and path length, mitigating the variations of result values caused by random-
ized algorithms. The generation of the Python program will be performed by a
Scala program that is generated by inhabitation. It makes use of Python code
templates which can be complemented with code fragments, eventually building
an executable Python program. The actions required for this build process are
held in combinator implementations which are typed components encapsulating
a piece of Scala code.
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These combinators take care of various steps such as:

– Parsing of problem definition files and referencing the 3D models

– Setup of samplers, state validators and motion validators

– Definition of geometric space, start and goal states, planner

– Substitution of code fragments according to a substitution schema

– Execution of the Python programs and parsing of the console output

4.1 A Repository for Sampling Based Motion Planning

An essential part of the methodology is the repository for the component-based
synthesis of motion planning programs set up as a proof-of-concept. The software
components are implemented as CLS combinators which contain Scala code and
a user-defined semantic type expression. For this study, 22 planner combinators,
six combinators for samplers, and three combinators for state and motion val-
idation were defined. Equation 4 displays three of these combinators and their
user-defined semantic type signatures. They were selected to describe the basic
principles of Scala programs that perform the generation, execution, and re-
sult extraction for Python scripts. The semantic repository Γs contains only the
semantic types from Γ0 for better readability.

Γs = {
PlannerAssembly: any planner → any state validator → any motion validator →
any simpli f ication → sbmp input → sbmp program,

PRMStarSchema : (any opt ob j → sampler space → PRMStar) ∩
(any opt ob j → sampler valid state → PRMStar) ∩
(any opt ob j → sampler in f ormed → PRMStar),

ESTSchema : ob j path → sampler valid state → EST,

[...] }

(4)

The combinator PlannerAssembly is a top-level component that constructs
the specified Scala program. According to the rule of modus-ponens in Sec-
tion 3.3, CLS can form a program described by sbmp program when it builds or
finds terms that comply with the semantic types any planner, any state validator,
any motion validator, any simpli f ication, and sbmp input. It will yield a function
typed ProblemDefinitionFile→ List[List[Float]] which loads an OMPL configu-
ration file and executes the specified motion planning program. List[List[Float]]
represents the result as a list of states that can be transformed to a continuous
path by linear interpolation. CLS provides means to define a subtyping relation
for semantic types by using a semantic taxonomy. For instance, the semantic
type any planner type is a base type that matches every semantic type describ-
ing a planner. However, the repository is dynamically built to represent a single
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algorithm configuration and will only contain one planner combinator. This se-
mantic structure allows efficient search for inhabitation results even for large
feature spaces.

The implementation resolves substitution schemas found by inhabitation to
generate the Python OMPL scripts. They contain string mappings used for tem-
plating and mappings for file paths of template and output files. The combinator
makes use of a wrapper class that invokes the templating, holds the file path to
the main Python script and performs execution and parsing of the generated pro-
gram. The parse function can be adapted to handle planner-specific output, dif-
ferent state representations and to accept approximate solutions. A data substi-
tution schema loads problem-specific data according to the contents of a configu-
ration file and has the native type ProblemDefinitionFile→ SubstitutionSchema.
It produces the corresponding substitution schema, which contains Python code
to define the configuration space as well as the start and goal state. Moreover, it
ensures that the problem-specific geometric models for the environment and the
robot model are loaded as bounding volume hierarchy objects using the Flexible
Collision Library (FCL [23]). These can be accessed as global variables, allowing
collision checks to be performed inside OMPL state and motion validator imple-
mentations. The collision detection combinators handle the allocation of correct
state and motion validators for the OMPL planning instance.

4.2 Encoding Domain Knowledge in Semantic Types

CLS semantic types are often used for the encoding of domain knowledge. In
this work, the semantic layer expresses which specific planners can use samplers
and optimization objectives. The type signatures displayed in Equation 4 contain
this information for the OMPL implementations of the two planners Probabilistic
Roadmap Method Star (PRM*, [20]) and Expansive Space Trees (EST, [15]).
PRM* is capable of utilizing space samplers or valid state samplers. We also allow
the use of an informed sampler, as it is a subclass of space sampler. The semantic
type also encodes that PRM* is an optimizing planner that can consider various
OMPL optimization objectives (e.g., path clearance or state cost integral). On
the other hand, the EST planner only supports the path length optimization
objective and requires a valid state sampler.

In case the specified sampler is not used by the configured planner, CLS
will not find an inhabitant. The inhabitation result will eventually be empty,
signaling that the requested algorithm configuration is invalid. These encodings
were collected for all considered planners and formulated as type expressions.

5 Experiments

5.1 3D Rigid Body Planning

The first part of the experimental evaluation deals with 3D rigid body planning.
We selected the OMPL provided planning problems1 and performed design space

1 http://omplapp.kavrakilab.org/
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exploration for every suitable problem instance. The experiments were conducted
with a design of experiment (DoE) phase with 50 randomly sampled algorithm
configurations, followed by 50 active learning iterations. The input value for
the maximal computation time was defined to be in the range of 2.0 to 90.0
seconds. Planning program instances that fail to find an exact solution after a
given time are considered unsuccessful program executions in the result set. The
solution paths of the sample-based motion planning programs are subjected to
OMPL simplification procedures as a post-processing step with a simplification
time of 2.0 seconds. Fig. 2 shows the optimization criteria computation time
and path length for an experiment on the problem instance Abstract. Every
point represents a single iteration result, i.e., the averaged result of 10 program
instances for a specified algorithm configuration.

Fig. 2. Results for the motion planning
problem Abstract

The design space includes the com-
plete set of OMPL planners and sam-
plers with Python bindings. However,
the plot contains only valid algorithm
configurations selected by the explo-
ration procedure, and we only consider
motion planning programs that yielded
exact solutions. The minimal observed
averaged length of simplified paths is
580 length units, corresponding to the
lower spectrum of the results docu-
mented in the OMPL planner arena.
The computation took at least 7 sec-
onds, including simplification. This is,
however, not comparable to the OMPL
planner arena data due to differences in
the experimental setup. In this particular experiment, our methodology deter-
mined the planners Expansive Space Trees (EST, [15]) and SBL ([29]) to be
well-suited for the given planning problem. Gaussian valid state sampling ap-
pears to have a positive impact on computation times, while maximum clearance
valid state sampling and uniform valid state sampling yielded strong results in
the path length dimension.

objective planner sampler
motion
validator

planning
time

path length 0.60 0.15 0.04 0.21

computation
time

0.50 0.19 0.02 0.29

failures 0.44 0.28 0.03 0.24

Table 1. Parameter importance for the problem in-
stance Abstract

Hypermapper can inform
about the importance of the
features. This metric is dis-
played in table 5.1 and was
retrieved at the end of the
optimization run. As ex-
pected, the planner selec-
tion has the most impact
on the different optimization
objects. The low importance
of the motion validator selec-
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Fig. 3. Success rate for various problem in-
stances

Fig. 4. Success rate for a model transfer be-
tween problem instances

tion could be explained by the planners’ sparse use of collision checks and the
simple geometric model of the Abstract problem instance.

We study the ability of our methodology to find valid algorithm configura-
tions. The trend of the probability of finding a valid program can be considered
as an indicator of the positive impact of the applied optimization techniques. The
experiments were performed with an asynchronous execution of ten generated
program instances per iteration. Thus, the number of successful program runs
is in the interval [0.0, 10.0], which was normalized to a percentage. The number
of successful path computations per iteration is computed based on the output.
A simple moving average is calculated for every optimization run, using the un-
weighted mean value of 10 previous iterations. That way, the probabilistic nature
of the algorithmic family of sampling-based motion planning algorithms can be
mitigated. The resulting trend of the success rate for multiple optimization runs
is displayed in Fig. 3.

We can observe a growing success rate with a significant increase after the
DoE phase (50 iterations). This finding suggests that our proposal is valid for
the given domain. The exploration involves the sampling of unknown, possibly
invalid, algorithm configurations, which leads to a success rate lower than 100%.
The ”Home” planning problem is challenging due to the long solution path and
narrow passages. Thus, the maximal allowed planning time of up to 90 seconds
results in a lower success rate. We incorporated a pre-learned model for the
problem instance ”Abstract” (using 50 DoE and 50 active learning iterations)
to explore the algorithmic feature space for different problem instances. This
approach allows examining the interchangeability of the problem-specific models,
using the success rates as a metric. Fig. 4 illustrates the averaged measurements
for the experiments, which begin at iteration 101. The captured data suggests
that an interchange of models is viable to some extent. As expected, the recorded
success rates are generally lower than in Fig. 3. The ”Home” instance shows
degraded success rates close to the performance of random sampling due to its
distinctive characteristics. The remaining planning problems appear to be more
receptive to the transferred model as they show success rates in the range of
30% to 60%.



12 Schäfer et al.

5.2 Motion Planning for Configurable Robotic Arms

An additional series of experiments demonstrates the extensibility of our method-
ology to other robotic systems and planning instances, using planning problems
for robotic arms as an example. The abstract notion of state validity allows in-
tegrating other robotic systems by setting up suitable state validators and space
definitions. Component-based synthesis guides users to design modular compo-
nents and also eliminates the effort for combining these modules. The planning
problem introduces a new configuration space consisting of a real vector, where
each dimension describes an angular position of the robot’s joints. The config-
uration space utilizes the euclidean distance between samples, which results in
optimal paths being defined as paths with minimal joint movement. Additional
software components enable the code generation of space definition, sampling,
and definition of goal and start state. Moreover, the problem requires a state
validator fitted to this robotic family. The validation finds the position and ori-
entation for each segment of the robot arm by using forward kinematics, which
involves the generation and transformation of FCL collision objects for each arm
segment. A series of collision checks examine the state validity regarding the en-
vironment and other parts of the robotic system. A state is valid if all checks
confirm a collision-free pose of the associated robot segment. The state valida-
tion instance automatically reads the robotic system’s degrees of freedom (DoF)
and its geometric models from URDF files.

The robotic arms utilized are synthesized from a separate repository consist-
ing of individual components using CLS. The individual components are motors,
their corresponding mounting brackets, and structural parts. The synthesized
robotic arms have an arbitrary number of revolute joints. For each synthesized
robotic arm, a corresponding URDF file and MoveIt! package for visualization
is generated. These are utilized to obtain example planning problems (Fig. 5)
for varied robotic arms and visually verify the resulting motion plans. Due to
the robotic arms being synthesized, a wide range of robotic arms are used in the
experiments. Robotic arms with DoF between four and ten are utilized. Different
environments that vary in their complexity and restrictiveness are tested.

Fig. 5. Visual representation of problem instances
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We study the influence of path simplification by comparing experiments with
and without the post-processing simplification step provided by the OMPL built-
in simplification procedures. The plots in Fig. 6 and Fig. 7 stem from two differ-
ent optimization runs for the same planning problem. We can observe a notable
shift of the Pareto front as post-processing leads to shortened paths and higher
overall runtime of the motion planning programs. Moreover, the problem def-
inition favors a different class of planners. As such, Fig. 7 shows a significant
accumulation of good data points for RRT Connect with uniform space sampling.

Fig. 8 and Fig. 9 show the optimization results for the same environment (pil-
lars) with different robotic systems (5 and 6 DoF). The differences in the robot
models affect the number of configuration space dimensions and the computa-
tional cost of state validation. The plots imply that the suitability of planners
may change according to the underlying planning problem. Additional experi-
ments for challenging problems involving robotic arms with 10 DoF were only
solvable with the Lazy RRT planner. These findings imply that the learned opti-
mization models are, in fact, robot-specific and thus offer limited transferability
to new robotic systems. In general, the given problem instances appear to be
favorable for planners using uniform space sampling.

Fig. 6. cylinder with path simplification Fig. 7. cylinder without path simplification

Fig. 8. pillars with 5 DoF Fig. 9. pillars with 6 DoF
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6 Discussion

While many algorithm configuration techniques try to find a parameter configu-
ration for a given algorithm, CLS composes different algorithms. Our methodol-
ogy allows a hybrid search that considers different algorithms and their param-
eterization. Moreover, it is possible to handle planner-specific parametrization
in a combinatory way by introducing multiple combinators with preset parame-
ter values for a single planner. That way, the impact of these configurations on
the optimization objectives could be observed with only minor changes to the
experimental design.

In this work, CLS is used to generate Python scripts and the methodology
is extendable to further programming languages. In general, our methodology is
language-agnostic as the code of any programming language can be produced and
manipulated with synthesized Scala programs. The support of C++ planning
programs could benefit a broad range of developers and allow access to various
planning instruments such as collision detection libraries.

We used a small repository that represents a space consisting of several
hundred unique feature configurations in this work. While currently limited to
OMPL programs, additional combinators emerging from real-life scenarios can
enrich the repository, allowing applicability to a broader range of problems. The
adaption to new planning problems involves minor additions to the algorithm
feature space, combinators, algorithm feature model, and Python templates. At
the same time, the structure of the approach may remain as depicted in Fig. 1.
CLS components are reusable and can provide a fast setup of experimental eval-
uation procedures. This way, the learning-based exploration of the algorithmic
feature space could help develop and evaluate planners, sampling strategies, or
collision detection techniques.

Hypermapper offers a great range of functionality that benefits the component-
based synthesis. Nevertheless, it is possible to use alternative optimization frame-
works by setting up specific black-box functions. The loose coupling between
black-box function, synthesis framework, and evaluation facilities supports easy
integration of alternative optimization techniques.
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