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Abstract. This work considers a Motion Planning Problem with Dy-
namic Obstacles (MPDO) in 2D that requires finding a minimum-arrival-
time collision-free trajectory for a point robot between its start and goal
locations amid dynamic obstacles moving along known trajectories. Ex-
isting methods, such as continuous Dijkstra paradigm, can find an opti-
mal solution by restricting the shape of the obstacles or the motion of the
robot, while this work makes no such assumptions. Other methods, such
as search-based planners and sampling-based approaches can compute
a feasible solution to this problem but do not provide approximation
bounds. Since finding the optimum is challenging for MPDO, this paper
develops a framework that can provide tight lower bounds to the opti-
mum. These bounds act as proxies for the optimum which can then be
used to bound the deviation of a feasible solution from the optimum. To
accomplish this, we develop a framework that consists of (i) a bi-level
discretization approach that converts the MPDO to a relaxed path plan-
ning problem, and (ii) an algorithm that can solve the relaxed problem
to obtain lower bounds. We also present numerical results to corroborate
the performance of the proposed framework. These results show that the
bounds obtained by our approach for some instances are up to twice
tighter than a baseline approach showcasing potential advantages of the
proposed approach.

Keywords: Motion Planning with Dynamic Obstacles · Optimality Bounds.

1 Introduction

The motion planning problem of finding a collision-free trajectory for a robot in
the presence of obstacles is one of the most fundamental problems in Robotics
[2,7,12,13]. In this article, we consider a Motion Planning Problem with Dynamic
Obstacles (MPDO) in 2D where the goal is to find a collision-free trajectory for a
point robot between its start location and destination in the presence of dynamic
obstacles such that the arrival time of the robot is minimized. The obstacles
can be of arbitrary shapes moving along known trajectories in the workspace.
If the obstacles are static, depending on the shape of the obstacles, there are
several algorithms to either find an optimal or bounded sub-optimal solutions
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in polynomial time [2,12,13]. In the presence of dynamic obstacles, this motion
planning problem is known to be NP-Hard [1].

There is currently no algorithm available in the literature to find an optimal
solution for the MPDO with generic obstacles following known but arbitrary
trajectories. There are methods, however, for finding an optimal solution to
some special cases of MPDO. By assuming that obstacles are convex polygons
moving along fixed directions with constant speeds, minimum-time trajectories
can be found by constructing an “accessibility graph” [5] in 3D with time added
as the third dimension. If the shapes of the obstacles are polygons, continuous
Dijkstra paradigms [4,9] can be leveraged to compute an optimal solution. When
both the obstacles and the path of the robot are rectilinear, an improved version
of the continuous Dijkstra paradigm with reduced time complexity has been
developed recently in [15]. While these methods find optimal solutions in theory,
we are not aware of any implementations of these algorithms or any numerical
results on the performance of these algorithms.

While finding the optimum is challenging, there are many algorithms in the
literature that can compute a feasible solution for MPDO. By discretizing the
workspace into a graph, search-based planners [16] can find an optimal solution
within the graph, whose quality is determined by the resolution of the discretiza-
tion. Path-velocity decomposition methods [11] can also be leveraged to find a
feasible solution by first finding a path among static obstacles and then find-
ing the speeds along the path to avoid the dynamic obstacles. Sampling-based
methods [3,10] have been applied for generalizations of MPDO with motion con-
straints and can be used to find feasible solutions. While one can find feasible
solutions, there are currently no a-posteriori or a-priori bounds that quantify
the deviation of these feasible solutions from the optimum.

In the absence of methods for finding the optimum, lower bounds can be used
as proxies to the optimum. Baseline approaches that find trivial lower bounds are
always possible, i.e., by either removing the dynamic obstacles or relaxing the
collision avoidance constraints. However, these bounds tend to be far away from
the optimum, and therefore, do not serve as good estimates of the optimum. The
goal of this paper is to develop a framework that can provide tight estimates of
the optimum to the MPDO in 2D (Fig. 1). While doing so, we make no assump-
tions on the shape of the dynamic obstacles or their motion. The framework we
develop consists of two parts. In the first part, we present a bi-level discretiza-
tion approach that relaxes some of the constraints of the MPDO and converts
it to a lower bounding path planning problem on a discrete graph, which is the
main contribution of this work. The second part then solves the path planning
problem using an A*-based [8] algorithm tuned to handle the constraints in the
lower bounding problem.

The proposed bi-level discretization approach (Fig. 1) simultaneously handles
the collision avoidance constraints and the generation of tight lower bounds.
The higher level of the discretization approach partitions the 2D workspace
into cells. This level allows us to relax and formulate the collision avoidance
constraints between the robot and the dynamic obstacles. The lower level divides
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each boundary of a cell into smaller sub-segments allowing a robot to either wait
on a sub-segment or travel only between two sub-segments belonging to a cell.
Each sub-segment is then treated as a node and the lower bounding problem is
formulated as a search on a graph consisting of all the nodes representing the sub-
segments. While the size of the cells at the higher level controls how the collision
avoidance constraints are strictly enforced, the size of the sub-segments at the
lower level determines the closeness of the computed trajectories to an optimal
solution. We theoretically show that our framework generates lower bounds and
then present numerical results to corroborate the performance of the proposed
approach.

Fig. 1. (a) An illustration of MPDO in 2D. The robot moves from the red dot (the
starting location) to the red star (the goal location) along a collision-free path. (b)
The brown dashed line visualizes the lower bounding solution computed by a baseline
method ignoring the dynamic obstacles (Sec. 7), which is not tight in general. The blue
lines illustrate the lower bounding solution of our approach. (c) Bi-level discretization:
the workspace is divided at the higher level into cells of size w. At the lower level, the
boundaries of each cell is divided into k sub-segments of equal size. Each sub-segment
forms a node in a graph and the lower bounding problem is formulated on this graph.
(d) Examples of lower bounding distances between vertices (i.e., sub-segments). By
tuning the hyper-parameters w, k, the tightness of the lower bound can be adjusted at
the expense of computational cost.
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2 Preliminaries

This work considers a workspceW = [0, L]×[0, L] and continuous time t ∈ [0, T ],
with L and T being finite positive real numbers. Each obstacle is moving along
some known trajectory within the time range [0, T ], with Nobs denoting the
total number of obstacles. Obstacles can have different and arbitrary shapes,
and can overlap with each other at any time. Note that the aforementioned
notion of obstacles include static obstacles, which follow trajectories that stay
in place within [0, T ]. Let Oi(t) ⊂ W, i = 1, 2, . . . , Nobs denote the subset of
the workspace occupied by the i-th obstacle at time t. Let s, d ∈ W denote the
start and destination of a point robot respectively. Let p : [0, T ]→W represent
a trajectory of the robot from s to d, and p is collision-free if the robot does
not enter the interior of any obstacle at any time. The robot can either wait in
place or move in any direction with speed no larger than Vmax. Let p∗ denote a
collision-free trajectory with the minimum arrival time C∗ at d, and C∗ is also
referred to as the optimal cost. The Lower Bounding Problem (LBP) aims to
compute a lower bound (i.e., underestimate) of C∗. In Sec. 3, we discuss the
bi-level discretization approach that leads to the formulation of the LBP. In Sec.
4 we then present an algorithm called LB-A∗ to solve the LBP.

3 A Lower Bounding Problem Formulation

3.1 Bi-Level Discretization

Graph Vertices: As shown in Fig. 1 (c), at the higher level, W is decomposed
into n × n (squared) cells of size w × w (n = L/w). Each cell is enclosed by
four boundaries or line segments that are perpendicular to each other. At the
lower level, a line segment is evenly divided into k sub-segments of length w

k .
Both line segments and sub-segments are closed sets of points (i.e., including the
ending point). Two sub-segments are said to be next to each other if they have
one common ending point. Let Vo denote a set of (graph) vertices, where each
vertex corresponds to a sub-segment in a cell. Let V := Vo ∪ {s, d}, where both
s and d can be regarded as a special sub-segment containing only a single point.

Let LS(v) (and SS(v)), ∀v ∈ V denote the set of points within the line
segment (and the sub-segment respectively) corresponding to v. Note that this
definition includes the cases where v = s and v = d: LS(s) = SS(s) = {s}
and LS(d) = SS(d) = {d}. Also, let LS :=

⋃
v∈V LS(v) represent the set of all

points that lie on any line segment. Similarly, let SS :=
⋃

v∈V SS(v), and note
that SS = LS.

Graph Edges: For any pair of distinct vertices vi, vj ∈ V within the same cell,
vi and vj are connected with an (un-directed) edge if they do not belong to the
same line segment (i.e., LS(vi) 6= LS(vj)). For example, in Fig. 1 (d), vertices
v2, v3 are not connected since they belong to the same line segment, and v3, v4
are connected as they belong to different line segments. More discussion on the
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edge connectivity is presented in Sec. 6. The edge joining any pair of vertices
(vi, vj) represents a move action of the robot between (vi, vj). Since each vertex
v ∈ V corresponds to a unique sub-segment SS(v), to simplify the presentation,
we also say an edge (v1, v2) connects two sub-segments SS(v1) and SS(v2). Let
Emove denote the set of all edges connecting a pair of sub-segments in all the
cells.

Edge Costs: The cost of an edge (v1, v2) ∈ Emove is defined to be an under-
estimate of any possible transition time (i.e., cost) between any pair of points
in the respective sub-segments SS(v1), SS(v2) connected by the edge. Formally,
for an edge e = (v1, v2) ∈ Emove,

cost(e) :=
minx1,x2 ||x1 − x2||

Vmax
, x1 ∈ SS(v1), x2 ∈ SS(v2). (1)

A few examples are shown in Fig. 1 (d): cost(v3, v4) = 0, cost(v1, v4) = 2w/3
and cost(v8, v5) =

√
2w/3.

3.2 Reachable Time Intervals and Self-Loops

To consider the collision avoidance requirement between the robot and the ob-
stacles (both static and dynamic obstacles), for each vertex v ∈ V and a time
point t ∈ [0, T ], vertex v and LS(v) are said to be non-reachable if the en-
tire line segment lies inside the union of obstacles at time t (i.e., LS(v) ⊆⋃

i∈{1,2,...,Nobs}O
i(t)). Otherwise, vertex v and LS(v) are said to be reachable

at time t. Additionally, for each vertex v ∈ V , the sub-segment SS(v) is said to
be reachable (or non-reachable) if LS(v) is reachable (or non-reachable). Here,
the possible collision between the robot and any obstacle is only considered at
vertices and is ignored along all edges (i.e., ignored during the transition between
vertices). This notion of collision defined in the graph relaxes the collision avoid-
ance requirement in the original continuous problem, and is hereafter referred
to as Relaxation-1. Note that this relaxation is allowed since our objective is
to find a lower bounding solution of C∗, instead of a feasible solution.

Let a reachable time interval Itv(v), v ∈ V be a maximal contiguous time
range [ta, tb], where v is reachable at any time point t ∈ [ta, tb]. Given the
trajectories of all the obstacles, the reachable time intervals of all vertices can
be computed. In general, there are multiple (for example J , a finite positive
integer) reachable time intervals at a vertex v, and we use subscript j in notation
Itvj(v), j = 1, 2, . . . , J to denote each of these reachable intervals at vertex v. The
robot can only reach a vertex v ∈ V if the arrival time t is within some Itvj(v).
The complements of reachable intervals are called non-reachable intervals. For
example, in Fig. 2, the reachable intervals of vertex v2 are [0, 2], [3, T ], and the
only non-reachable interval of v2 is (2, 3).

After the robot has reached a vertex, the robot is allowed to stay at this
vertex for an arbitrary amount of time, ignoring any non-reachable interval at
this vertex in the future. This is also a relaxation of the collision avoidance
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Fig. 2. (a) An obstacle (the black oval) that moves from the right to the left along
some known trajectory. (b) The reachable intervals of vertex v2 are [0, 2], [3, T ] while
the non-reachable interval is (2, 3).

constraint between the robot and the obstacles, which is hereafter referred to as
Relaxation-2. For example, in Fig. 2, if the robot reaches v2 at a time point
within [0, 2], then the robot is allowed to stay at v2 during the non-reachable
interval (2, 3).

The wait action of the robot can be described as a special type of edge, the
self-loop in the graph, whose cost can be any positive number (indicating the
wait time of the robot at the vertex) and needs to be determined during the
planning process. As presented in Sec. 4, the proposed planner that solves the
LBP will determine the self-loop cost during the planning process. Finally, let
Ewait denote the set of all self-loops corresponding to all vertices in V .

Remark. The reachable time intervals are similar to the notion of “safe intervals”
in SIPP [16]. The main difference is the newly introduced Relaxation-1,2, which
allow us to obtain lower bounds by relaxing the collision avoidance constraint
at a vertex or during the transition between vertices and intervals. Since we are
looking for lower bounding solutions (which can collide with the obstacles in the
continuous space and time and thus “unsafe”), we use the term “reachable time
intervals” to highlight the difference.

3.3 Lower Bounding Problem Definition

Let edge set E := Emove ∪ Ewait, and define graph G := (V,E). Let Itv(G)
denote the set of all reachable intervals of all vertices in G. When parameters
(w, k) are given, the corresponding graph G as well as Itv(G) are well defined,
which specifies a (w, k)-Lower Bounding Problem (referred to as (w, k)-LBP):

Definition 1. A (w, k)-LBP requires finding a minimum-cost trajectory p from
s to d in G such that the arrival time at each vertex v along p is within some
reachable time interval Itv(v).

We will prove in Sec. 5 that the cost of an optimal solution trajectory to a
(w, k)-LBP is guaranteed to be a lower bound of C∗, and hence the name “lower
bounding problem”.
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Algorithm 1 Pseudocode for LB-A*
1: g(v)←∞, ∀v ∈ V
2: g(s)← 0, and add s to OPEN
3: while OPEN not empty do . Main search loop
4: v ← OPEN.pop()
5: if v = d then
6: return Reconstruct(v)
7: for all u ∈ Neighbor(v) do
8: g′ ← EarliestReach(v, u)
9: if g(u) ≤ g′
10: continue . End of this iteration
11: g(u)← g′, parent(u)← v
12: Add u to OPEN
13: return Failure

4 Lower Bounding A*

4.1 LB-A* Overview

Given a (w, k)-LBP (which includes the corresponding graph G and Itv(G)), we
develop an A*-like [8] graph search algorithm called LB-A* (Lower Bounding
A*) to compute an optimal solution, which is shown in Alg. 1.

Similar to A*, let g(v),∀v ∈ V denote the cost-to-come (i.e., the earliest
arrival time at v), which is initialized to ∞ for all vertices with the exception
that g(s) is set to zero. Let h(v) denote the heuristic value, which underestimates
the cost-to-go from v to the destination d. Also, let OPEN denote a priority queue
of candidate vertices that will be selected and expanded by the algorithm at any
time during the search. OPEN prioritizes candidate vertices v based on their
f -values, which are defined as f(v) := g(v) + h(v). Initially, s is inserted into
OPEN (line 2) with f(s) = h(s) (since g(s) = 0).

In each search iteration (lines 3-12), a vertex in OPEN with the minimum
f -value is selected for expansion. If v is the same as d, a solution trajectory
is found, which is reconstructed by iteratively backtracking the parent pointers
of vertices. The cost of this trajectory is guaranteed to reach the minimum.
Otherwise, v is expanded by examining each of its neighboring vertices in G
(denoted as Neighbor(v)).

During the expansion, for each u ∈ Neighbor(v) (lines 7-12), the earliest
possible reachable time (denoted as g′) from v to u is computed via procedure
EarliestReach, which is explained later. Then, g′ is used to update g(u) if g(u) >
g′, which means g′ leads to a cheaper trajectory to reach u via v, and u is inserted
into OPEN for future expansion.

4.2 Compute Earliest Reachable Time

This section revisits reachable intervals and then presents the procedure Ear-
liestReach. For each v ∈ V , the set of reachable intervals {Itv(v)} can be pre-
computed based on the trajectories of the obstacles, and by definition, no two
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intervals in {Itv(v)} can overlap with each other. For each v, sort {Itv(v)} based
on their starting time points from the minimum to the maximum, and denote
the j-th interval in {Itv(v)} as Itvj(v), j = 1, 2, . . . J , where J is a finite number.

To compute the earliest reachable time from vertex v to u, EarliestReach(v, u)
iteratively checks each reachable interval Itvj(u) = [taj , t

b
j ], j = 1, 2, . . . , J to find

the first interval Itvj′(u) = [taj′ , t
b
j′ ] such that the ending time point tbj′ ≥ g(v)+

cost(v, u). The robot is guaranteed to be able to reach u within this reachable
time interval via waiting at v and then moving to u, and the earliest reachable
time is max{taj′ , g(v) + cost(v, u)}. In other words, when taj′ > g(v) + cost(v, u),
the robot waits at v for an amount of time taj′ − (g(v) + cost(v, u)) and then
moves from v to u using an amount of time cost(v, u). Note that the robot can
wait at v for an arbitrary amount of time (according to Relaxation-2), and the
potential collision along the edge is ignored (according to Relaxation-1).

5 Analysis

5.1 Lower Bounds

This section introduces some definitions and then shows that the solution cost
to the aforementioned (w, k)-LBP problem is a lower bound of C∗.

Definition 2 (Line Segment Indicator Function). Let ILS(x), x ∈ W de-
note the line segment indicator function:

ILS(x) =

{
LS(x) if x ∈ LS
∅ if x /∈ LS.

Note that in the above definition, we abuse the notation a bit to simplify our
presentation: here, notation LS(x) denotes the line segment that contains point
x ∈ W when x is within some line segment, while in the previous section, notation
LS(v), v ∈ G is only defined over the vertices in G.

As a special case, if x is an ending point of a line segment that is shared
by multiple line segments, then LS(x) can denote an arbitrary one of those line
segments. An illustration of ILS is shown in Fig. 3 (a).

Definition 3 (Arrival Times). When an optimal solution trajectory p∗ to the
continuous problem exists, arrival times τj , j = 0, 1, . . . , jmax along p∗ are real
numbers that are defined as follows. If j = 0 then τ0 = 0; Otherwise τj+1 = inf{t |
t > τj, ILS(p

∗(t)) 6= ∅, ILS(p
∗(t)) 6= ILS(p

∗(τj))}.

In the above definition, condition t > τj guarantees τj increases when j increases.
Condition ILS(p

∗(t)) 6= ∅ ensures p∗(τj) for any j is within some line segment.
Condition ILS(p

∗(t)) 6= ILS(p
∗(τj)) ensures the corresponding line segments of

τj and τj+1 are not the same.
There is a special case that requires additional discussion before introduc-

ing Lemma 1, which is conceptually visualized as the yellow point in Fig. 3

8



Fig. 3. (a) visualizes the notion of the line segment indicator function. (b) visualizes
an edge case, where the duplication trick is used to ensure that the corresponding sub-
segments contained in two subsequent ILS(p

∗(τj)) are connected by an edge in G. See
text for more details.

(a). When p∗ goes through a (corner) point x that is shared by four adjacent
cells, a “duplication” trick is required to make sure that the corresponding sub-
segments contained in two subsequent ILS(p

∗(τj)) are connected by an edge in G.
Specifically, let ILS(p

∗(τj)) denote a line segment that is within the same cell as
ILS(p

∗(τj−1)). Then, if ILS(p
∗(τj)) is not within the same cell as ILS(p

∗(τj+1)),
duplicate an additional time point τ ′j = τj and let ILS(p

∗(τ ′j)) denote the line
segment that is within the same cell as ILS(p

∗(τj+1)). As an illustration, in Fig. 3
(b), the line segment corresponding to vj is such a choice (not the only choice)
for ILS(p

∗(τj)), and the line segment corresponding to vj′ is the duplication.
(Note that the cost of edge (vj , vj′) is zero.)

Lemma 1. When p∗ exists, a corresponding trajectory p in G can be constructed
such that every two subsequent vertices in p are connected by an edge in G.

Lemma 2. When p∗ exists, there is a finite jmax such that p∗(τjmax
) = d.

Theorem 1. Given a continuous problem with an optimal solution p∗ (with the
minimum cost C∗), and a (w, k)-LBP with graph G, there exists a corresponding
feasible solution p in G such that cost(p) ≤ C∗.

Proof. By Lemma 2, jmax is finite. If jmax = 1, then s, d are within the same cell,
and τj , j = 0, 1 corresponds to LS(s), LS(d) respectively. In this trivial case, a
straight-line trajectory that directly connects s, d exists and its cost is no larger
than C∗.

If jmax > 1, then p∗ must intersect with at least one line segment. For any
j ∈ {0, 1, . . . , jmax−1}, at time τj , point p∗(τj) is collision-free, since the point is
part of p∗ (which is a collision-free optimal trajectory to the continuous problem).
Line segment ILS(p

∗(τj)) is thus reachable. For the same reason, line segment

9



ILS(p
∗(τj+1)) is also reachable. By Lemma 1, a trajectory p in G corresponding

to p∗ exists. Let vj and vj+1 denote the vertices in the graph G along p such
that p∗(τj) ∈ LS(vj) and p∗(τj+1) ∈ LS(vj+1). By definition in Sec. 3.2, the line
segments LS(vj) and LS(vj+1) are reachable at time τj and τj+1 respectively.
In addition, cost(vj , vj+1) ≤ τj+1−τj (by Equation 1). The arrival times at each
vertex along p can be constructed by letting the robot reach each vj+1 at time
τj+1 in G via wait and move actions, for all j = 0, 1, . . . , jmax − 1. (The wait
time at each vj is τj+1 − τj − cost(vj , vj+1).)

Lemma 3. Given a (w, k)-LBP, LB-A* computes an optimal trajectory in G
when heuristic values are admissible (i.e., h(v),∀v ∈ G underestimates the cost
of an optimal trajectory from v to d in G).

Theorem 2. Given a continuous problem with the minimum cost C∗, the cost of
the solution trajectory p (denoted as cost(p)) computed by LB-A* to any (w, k)-
LBP satisfies cost(p) ≤ C∗ (i.e., cost(p) is a lower bound of C∗).

Proof. By Theorem 1, there exists a corresponding trajectory p′ in G to an
optimal trajectory p∗ to the continuous problem, and cost(p′) ≤ cost(p∗) = C∗.
By Lemma 3, LB-A* computes an optimal solution p in G and thus cost(p) ≤
cost(p′). Therefore, cost(p) ≤ C∗.

5.2 Computational Complexity

Graph Size: In the (w, k)-LBP problem formulation, to discretize the workspace,
there are totally n2 cells. Within each cell, there are 4k sub-segments. Since each
sub-segment that is not on the borders of the workspace is shared by two cells,
there are totally 2k(n2 + n) sub-segments in the workspace. Thus, the number
of vertices in G is |V | = 2k(n2 + n) = O(kn2).

Within a cell, each sub-segment is connected with at most 3k other sub-
segments. There are at most 4k × 3k edges within a cell. Since the connectivity
between sub-segments within each cell is defined in the same way, only one copy
of the edges needs to be stored. Therefore, graph G requires a storage of size
|V |+ |Emove| = O(2k(n2 + n) + 12k2) = O(kn2 + k2).

As this work does not assume the shape or the trajectory of the obstacles, it
is hard to bound the size of Itv(G) and analyze the computational complexity
of Itv(G). We discuss potential future work in Sec. 8.

Search Branching Factor: As aforementioned, each sub-segment is connected
with at most 3k other sub-segments within a cell, and each sub-segment (not on
the borders of W) is shared by two adjacent cells. Thus, for each sub-segment,
there are at most 6k neighbors, which is the branching factor that affects the
search efficiency of LB-A*. As shown in the ensuing section, there is a trade-off
between computing tighter lower bounds (increasing n and k) and expanding
fewer vertices (decreasing n and k).
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6 Discussion

6.1 Edges Between Sub-Segments

First, we explain the reason for not connecting vertices within the same line
segment as mentioned in Sec. 3.1. With Equation 1. the edges connecting any
two adjacent vertices have zero cost. If all the adjacent vertices are connected,
then the optimum for the lower bounding problem can have zero cost, which is
a trivial lower bound. Additionally, for non-adjacent vertices that lie within the
same line segment, there is no need to connect them for the following reason.
With the LBP formulation and LB-A*, we only need to consider the case where
there is only one transition inside a cell before leaving it. In other words, there is
no need to consider the case where the trajectory intersects with the same line
segment multiple times, since (i) the robot can wait for any amount of time after
its arrival at a vertex (due to Relaxation-2), and (ii) the resulting trajectory is
still a lower bound based on the proof in Sec. 5. Based on this observation, the
edges between non-adjacent vertices that lie within the same line segment can
be omitted, which can help reduce the branching factor during the search.

6.2 Adding Expansion Constraints

As mentioned in the previous sub-section, there is no need to consider the
case where the trajectory in G intersects with the same line segment multiple
times. We can leverage this observation to enforce that each cell is traversed for
only once during the search, which has the potential to provide a tighter lower
bound. Specifically, the Neighbor(v) procedure at line 7 in Alg. 1 is modified
as follows. First, let notation cell(u, v) denote the cell that is traversed by edge
(u, v) ∈ Emove (i.e., LS(u) and LS(v) are boundaries of cell(u, v), which deter-
mines a unique cell). When generating the neighbor vertices of v in procedure
Neighbor(v), we enforce the constraint that: for each generated neighbor vertex
v′, cell(v, v′) 6= cell(parent(v), v). In other words, edge (v, v′) cannot traverse
the same cell as edge (parent(v), v) does. As a special case, in the first iteration
of the search (i.e., when v = s and parent(s) does not exist), we do not enforce
this constraint when expanding s.

7 Numerical Results

For all the tests in this work, the workspace is of size L × L with L = 1 and
Vmax = 0.03. In LB-A*, the expansion step uses the one as described in Sec. 6.2,
and heuristic values of all vertices are simply set to zero, which are admissible.
The baseline approach used for comparison in all the experiments is: (i) con-
structing a visibility graph [14] among the static obstacles while ignoring all the
dynamic obstacles, and (ii) finding a shortest path connecting s and d within the
visibility graph. Please refer to our video (https://youtu.be/wf76WJj7KtQ) for
visualization of the experimental results.
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Fig. 4. Experiment 1. Fig. (b) shows the workspace with two bar-like static obstacles,
and an optimal trajectory p∗ from the start (the blue dot on the left) to the destination
(the blue star on the right). Fig. (a) and (c) visualize p∗ in blue and the solution
(trajectory) computed by LB-A* in green. Fig. (d) shows the ratios C/C∗ with varying
k, where C is the cost of the solution computed by LB-A*, and C∗ is the cost of p∗.
This figure shows that, by increasing k (the number of sub-segments), the lower bound
computed by LB-A* becomes tighter.

7.1 Experiment 1: Simple Instance with Known C∗

To begin with, we construct a simple test instance as shown in Fig. 4 (b). There
are two bar-like static obstacles with negligible width, and no dynamic obstacles.
Since there is no dynamic obstacle, the solution computed by the baseline p∗ is
an optimal trajectory. In Fig. 4 (a,b,c), p∗ is visualized as the blue lines. The
true optimal cost C∗ can be calculated, which is 0.4

√
2+0.6

Vmax
= 38.853.

To verify our approach, a LBP is formulated by discretizing the workspace
into 10 × 10 cells (i.e., n is fixed at 10), and each line segment within a cell is
divided into k sub-segments, where k ∈ {10, 20, 30, 40, 50}. LB-A* is invoked to
solve the formulated LBP and finds a trajectory p, which is visualized as the
green lines in Fig. 4 (a) and (c). Let Cgreen, Cblue denote the cost of the green
and the blue trajectories within a cell. In Fig. 4 (a), the cost of the edge between
vertices v1 and v2 is Cgreen =

√
2(k−1)
10k , while the portion of p∗ contained in this

cell has cost Cblue =
√
2

10 , and
Cgreen

Cblue
= k−1

k . Similarly, in Fig. 4 (c), this ratio can
also be calculated as Cgreen

Cblue
= k−1

k (note that cost(v4, v5) = 0). The same type of
analysis can be applied for each cell along p∗, and we have cost(p)

C∗ = k−1
k . Thus

in this experiment, by increasing k, cost(p) converges to C∗. As shown in Fig. 4
(d), the numerical results output by LB-A* align with the above discussion.
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Fig. 5. Experiment 2. Fig. (b) illustrates the test instance. The curves in Fig. (a) show
(i) the lower bounds of C∗ computed by LB-A* with different k, n parameters, (ii) the
lower bound of C∗ computed by the baseline approach, (iii) the upper bound of C∗

computed by SIPP. The bar plot in Fig. (a) shows the number of states expanded by LB-
A* during the search with different k, n parameters. Fig. (c) compares the optimality
bound estimated for the feasible solutions computed by RRT and SIPP. This estimate
is computed by using either our approach or the baseline, and our approach can provide
up to twice tighter optimality bound estimate (the less the better) than the baseline.

7.2 Experiment 2: One Dynamic Obstacle

In the presence of dynamic obstacles, in general, C∗ is hard to obtain and the
baseline approach is able to compute a lower bound as the dynamic obstacles are
ignored. To obtain feasible solutions (whose costs are upper bounds of C∗), we
implement two algorithms, SIPP [16] and RRT [13]. For SIPP, the workspace is
discretized as a 40× 40 eight-connected grid. For RRT, we implement the basic
version without any improving technique.

We begin with an instance (Fig. 5 (b)) where a circular obstacle of radius 0.25
moves from the center of the workspace to the left, while the robot moves from
the middle point on the left border of the workspace to the middle point on the
right border. In this instance, the shortest path in the visibility graph constructed
is simply a straight line connecting s, d, whose length is the Euclidean distance
between s, d. The lower bound of C∗ computed using the baseline approach is
1/0.03 = 33.3.

Fig. 5 (a) shows the lower bounds computed by LB-A* with varying n, k.
When n, k increase, the lower bound becomes larger (i.e., tighter). Additionally,
the lower bounds computed by LB-A* outperform the baseline as n, k increase.
Given a feasible solution with cost C (C ≥ C∗) and a lower bound C ′ (C ′ ≤ C∗),
an estimate of the optimality bound of C can be computed as C−C′

C′ , which
justifies how far C is away from C∗ in the worst case. (Note that C−C∗

C∗ ≤ C−C′
C′

since C ′ ≤ C∗.) Fig. 5 (c) shows the estimate provided by using the lower bounds
computed by LB-A* for both the feasible solutions computed by SIPP and RRT.
For example, the solution p computed by SIPP has a cost of 38.85, while the
lower bound computed by LB-A* is 35.93, and p is guaranteed to be less than
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Fig. 6. Experiment 3. See the caption of Fig. 5 for details. The optimality bound
estimated by using our approach is obviously tighter than using the baseline approach.

38.85−35.93
35.93 = 8.1% away from C∗. As shown in Fig. 5 (c), in comparison with the

baseline, our approach can improve this optimality bound estimate from 16.5%
to 8.1% (the less the better).

7.3 Experiment 3: Dynamic and Static Obstacles

We then consider an instance as shown in Fig. 6 (b). There are two bar-like static
obstacles (the blue rectangles with negligible width), and there are 10 circular
obstacles of radius 0.15 moving from the center of the workspace along some
random trajectories. In this instance, the solution obtained by the baseline is
visualized as the brown dashed lines in Fig. 6 (b), whose cost is 37.16. The lower
bound computed by LB-A* outperforms the baseline when n and k increase,
as shown in Fig. 6 (a). The optimality bound estimated for both the RRT and
SIPP solutions using our approach is obviously better than using the baseline
(Fig. 6 (c)).

7.4 With and Without the Expansion Constraint

So far, the reported results of LB-A* are obtained by enforcing the expansion
constraint (Sec. 6.2) during the search. Without the expansion constraint, the
lower bounds obtained by LB-A* are slightly looser. For example, let n = 20, k =
25, for Experiment 2, the lower bound obtained without (and with) the expansion
constraint is 35.82 (and 35.93 respectively). It remains an open and challenging
question about how to further improve the tightness of the lower bound and we
will discuss potential future work in Sec. 8.

7.5 Computational Burden

In Fig. 5 (a) and Fig. 6 (a), the number of expansions required by LB-A* during
the search is shown as bar plots with respect to the right-side vertical axes of the
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plots. With larger n and k, the generated graph G has more vertices and edges
as explained in Sec. 5.2, which burdens the LB-A* search. There is a trade-off
between the search efficiency and the tightness of the lower bound computed.

Finally, if the problem instance is simple (e.g. has few dynamic obstacles, sim-
ilar to Experiment-1), the baseline approach can probably provide a tight lower
bound with little computational effort, and our approach is not advantageous
when considering the required computational effort.

8 Conclusion

This work considers a Motion Planning Problem with Dynamic Obstacles (MPDO),
and aims at computing tight lower bounds of the true optimum C∗. To this end,
a framework is developed, which consists of two parts: the first part is a bi-level
discretization approach to formulate a lower bounding problem (LBP) corre-
sponding to MPDO such that the solution cost to the LBP is guaranteed to be a
lower bound of C∗; the second part of the framework is a graph search algorithm
LB-A* that can solve the formulated LBP to obtain lower bounds. We analyze
and numerically evaluate the framework. In our experiments, the lower bounds
computed by our approach is tighter than using a baseline method. Consequently,
a tighter optimality bound estimate for the feasible solutions computed by SIPP
and RRT can be obtained.

Future work can follow many research directions. First, one can improve the
proposed LBP formulation in this work to reduce the computational complexity
and memory usage, or improve the tightness of the lower bounds. For example,
the current relaxation of the obstacle avoidance constraint (i.e., Relaxation-1,2)
can be potentially improved when additional knowledge about the obstacle tra-
jectories (e.g. a polynomial of bounded degree [7]) is known, which can help
tighten the computed lower bound or help with the theoretic analysis of the com-
putational complexity. One can also consider non-uniform discretization [6,17]
or sampling-based strategies to adaptively discretize the workspace based on
the trajectory of the dynamic obstacles, which have the potential to reduce the
computational burden. Another direction is to develop new planners that can
solve the formulated LBP more efficiently by designing informative heuristics,
or improving the search algorithm itself (such as the expansion constraint in
Sec. 6.2). Finally, one can consider extending the framework to non-Euclidean
or high-dimensional spaces.
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