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Abstract. Suction cup grasping is very common in industry, but moving too
quickly can cause suction cups to detach, causing drops or damage. Maintaining
a suction grasp throughout a high-speed motion requires balancing suction forces
against inertial forces while the suction cups deform under strain. In this paper,
we consider Grasp Optimized Motion Planning for Suction Transport (GOMP-
ST), an algorithm that combines deep learning with optimization to decrease
transport time while avoiding suction cup failure. GOMP-ST first repeatedly
moves a physical robot, vacuum gripper, and a sample object, while measur-
ing pressure with a solid-state sensor to learn critical failure conditions. Then,
these are integrated as constraints on the accelerations at the end-effector into a
time-optimizing motion planner. The resulting plans incorporate real-world ef-
fects such as suction cup deformation that are difficult to model analytically.
In GOMP-ST, the learned constraint, modeled with a neural network, is lin-
earized using Autograd and integrated into a sequential quadratic program op-
timization. In 420 experiments with a physical UR5 transporting objects rang-
ing from 1.3 to 1.7 kg, we compare GOMP-ST to baseline optimizing motion
planners. Results suggest that GOMP-ST can avoid suction cup failure while de-
creasing transport times from 16 % to 58 %. For code, video, and datasets, see
https://sites.google.com/view/gomp-st
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1 Introduction

Vacuum suction cup grasping, due to its ability to quickly hold and release a large
variety of objects, is a common grasping modality for robots in industrial settings such
as warehouses and logistics centers. With the recent rise in demand for robot pick-and-
place operations, the speed of object transport is critical. However, suction grasps can
fail if the object is transported too quickly. Determining the conditions where suction
grasps fail is non-trivial due to the difficult-to-model deformations of suction cups under
stress. Existing analytic models make simplifying assumptions, such as rigid suction
cups [31] or quasi-static physics [26, 30, 10]. An alternative is to heuristically slow
motions when objects are held in suction grasps.

In prior work, the Grasp-Optimized Motion Planner (GOMP [13]) leveraged an un-
constrained degree of freedom (DoF) around the grasp axis to optimize pick-and-place
motions for parallel jaw grippers. Grasp-Optimized Motion Planning for Fast Inertial

https://sites.google.com/view/gomp-st
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(a) A fast motion resulting in suction failure (b) A successful transport over obstacle

Fig. 1: High-speed motions can cause failure of suction cups. These multiple-exposure images
show motions computed by the time-optimizing motion planners (a) J-GOMP and (b) GOMP-ST.
The fast trajectory computed by J-GOMP and inertial forces cause the suction grasp to fail and the
grasped block to fall away and to the right. We propose GOMP-ST, an algorithm that incorporates
a learned acceleration constraint into a time-optimizing motion planner to avoid such failures.

Transport (GOMP-FIT [11]) computes time-optimized motions while taking into ac-
count end-effector and object acceleration constraints to reduce product damage and
spills. However, when executed on robots with suction grippers, the resulting motions
can fail due to suction cups detaching.

To address this problem, we propose the Grasp Optimized Motion Planning for
Suction Transport (GOMP-ST), an algorithm that computes time-optimized motions by
integrating a learned suction grasp loss constraint. GOMP-ST first tries varied rapid
lifts of a given object with suction grasps to find motions that cause suction failures.
It then learns a model from the data based on a history, or sequence, of end-effector
accelerations to define a constraint function. At run time, the optimization treats the
learned model as a non-linear constraint on the motion by linearizing it and computing a
first-order approximation based on its Jacobian. In our implementation, we use a neural
network to learn the suction model and use Autograd to obtain the Jacobian.

In experiments with steel rectangular blocks, we learn a model of suction failure
on a physical UR5 with a 4-cup vacuum gripper. We then apply the learned model to
transport 4 objects of varying mass held in suction between multiple different start and
goal pairs and around obstacles. We compare GOMP-ST to GOMP, GOMP-FIT with
an analytic model of suction, and ablations of GOMP-ST. We find that GOMP-ST can
achieve a near 100 % success rate, for motions that are 16 to 58 % faster.

The contributions of this paper are:

– A novel algorithm, GOMP-ST, Grasp Optimized Motion Planning for Suction Trans-
port, based on:
1. Formulation of a learnable acceleration constraint for suction cup transport
2. An efficient method for learning the constraint via boundary searching and data

augmentation
3. Integration of the learned constraint into an optimizing motion planner

– Data from experiments with a physical robot comparing GOMP-ST to baselines.
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2 Related Work
2.1 Motion Planning and Optimization

Robot motion planning aims to find safe and efficient robot motions from a start to
a goal configuration that avoid obstacles. Sampling-based motion planners, such as
PRM [15] and bi-directional RRT [19] have variants that are probabilistically-complete
and asymptotically-optimal. Optimization-based motion planners, such as TrajOpt [34],
STOMP [14], CHOMP [32], KOMO [37], and ITOMP [29] can compute optimized tra-
jectories iteratively improving paths or interleaving with sampling-based planners [18].
Grasp-Optimized Motion Planning (GOMP) [13] and Deep-Jerk GOMP (DJ-GOMP) [12]
leverage a degree-of-freedom in the grasp pose while integrating dynamic and kine-
matic constraints in a sequential quadratic program that iteratively computes time-
optimized pick-and-place motions. GOMP for Fast Inertial Transport (GOMP-FIT) [11]
incorporates end-effector acceleration constraints for parallel-jaw grippers by employ-
ing the forward pass of the Recursive Newton Euler (RNE) method [22]. In contrast to
prior work, GOMP-ST learns a suction-cup constraint to avoid suction grasp failure.

2.2 Constraint Learning in Optimization

Optimization using constraints based on empirical models is gaining traction. Maragno
et al. [27] integrate learned constraints into a mixed-integer optimization using trust
regions defined by the convex hull of the training data. In contrast, we propose using
domain knowledge to perform data augmentation in a continuous optimization. Kudła
et al. [17] propose a learning a decisions tree of constraints and a transform appro-
priate for mixed integer linear programming. While the decision tree provides flexible
conditions for constraints, we instead propose exploiting the nature of the trajectory
optimization by regressing on inputs containing the last h time steps. Bartolini et al. [2]
and later Lombardi et al. [21] show that neural networks can learn constraints based on
difficult-to-model phenomena be integrated into constrained combinatorial optimiza-
tions. We employ neural network constraints in continuous non-convex optimization.
De Raedt et al. [6] provide a recent survey of constraint acquisition, and Fajemisin et
al. [7] provide a recent survey of optimization with constraint learning. These surveys
provide a wealth of ideas that could be extended to apply additional constraint learning
and learned constraints to optimizing motion planning.

2.3 Suction Grasping

Suction grasping is widely used in industrial settings. Due to the increasing interest in
suction grasping for pick-and-place tasks, recent models focus on computing a robust
suction grasp. Dex-Net 3.0 [26] introduced a novel suction contact model that quan-
tifies seal formation using a quasi-static spring system, along with a robust version of
the model under random disturbing wrenches and perturbations in object pose, grip-
per pose, and friction. Huh et al. [10] use a learned model and a novel multi-chamber
suction cup design to detect failures in the suction seal early to avoid grasp failures.
However, these works assume quasi-static physics, an assumption that does not hold
for high inertial forces.
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Most closely related to this paper is the work by Pham and Pham [30] which pro-
poses a suction-cup model and identify a contact stability constraint and a pipeline to
parameterize time-optimal geometric paths satisfying the constraint. GOMP-ST dif-
fers in a few ways. First, their method plans a motion using a sampling-based planner,
then time-parameterizes the motion, whereas GOMP-ST integrates planning and time-
parameterization into a single optimization, allowing to explore alternate paths with
potentially better timing. Second, their method uses an analytic model that does not in-
clude suction cup deformation, whereas GOMP-ST learns a constraint based on suction
grasps failures through experimentation.

2.4 Dynamic Manipulation

Dynamic manipulation exploits forces due to accelerations, along with kinematics,
static, and quasi-static forces to achieve a task [33]. Lynch and Mason [24] leverage
centrifugal and Coriolis forces to allow low degree-of-freedom robots to control objects
with more degrees-of-freedom. Lynch and Mason [25] also directly integrate constraints
in a sequential quadratic problem to plan robot trajectories that achieve a dynamic task,
such as snatching an object, throwing, and rolling, via coupling forces through the non-
prehensile contact in an obstacle-free environment. Srinivasa et al. [35] address the
problem of rolling a block resting on a flat palm by employing constraints on acceler-
ations at the contact point. Mucchiani and Yim [28] propose a grasping approach that
utilizes object inertia for sweeping an object at rest to a goal position by leveraging ac-
celerations and torques from the path as stabilizing forces in the passive end-effector. In
this work, we employ constraints on the end-effector accelerations to perform efficient
dynamic object transport around obstacles using a suction gripper.

One promising related avenue of research investigates motion planning and opti-
mization that integrates forces present at the end-effector. Hauser [9] investigates in-
cluding contact forces during the optimization, and Luo and Hauser [23] extend this to
include a learned confidence into an optimization. In a similar manner, Bernheisel and
Lynch [3] and Acharya et al. [1] both explore different ways to address the waiter’s
problem which requires generating motions of a tray to perform non-prehensile balanc-
ing of objects. In contrast to these lines of work, we focus on learning and integrating
a constraint to maintain suction contact as a differentiable function, instead of learning
the parameters of a model and integrating it into a plan.

When the dynamics are unknown or the existing models are insufficiently accu-
rate, a promising approach is to leverage data-driven methods. Zeng et al. [40] propose
TossingBot that learns parameters of a pre-defined dynamic motion to toss objects into
target bins using parallel-jaw end-effectors. Wang et al. [39] propose SwingBot, that
uses tactile feedback to learn how to dynamically swing up novel objects. In Robots of
the Lost Arc [41], a robot computes high-speed motions to induce fixed-end cables to
swing over distant obstacles, knock down target objects, and weave between obstacles.
Ha and Song [8] propose FlingBot, a self-supervised learning framework to learn dy-
namic flinging actions for cloth unfolding. Lim et al. [20], uses simulation and physical
data to train a model for swinging an object to hit a target. In this work, we integrate a
learned a constraint in the solver allowing it to compute fast motions while maintaining
the suction seal.
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Fig. 2: GOMP-ST pipeline. In an offline process (top), GOMP-ST performs self-supervised
learning of a constraint function. It first repeatedly grasps objects of known mass to perform
a boundary search on a motion profile parameterized by jerk and acceleration limits. Then, dur-
ing data augmentation, it labels slower motions as grasp successes, and faster motions as grasp
failures. Finally, it trains a neural network constraint function gθ . In the online process (bottom),
GOMP-ST computes a motion plan for a given problem. The SQP solver repeatedly linearizes
the learned suction constraint using a user-specified threshold dsafe ∈ [0, 1] and the output and
Jacobian (via autograd) of the trained neural network.

3 Problem Statement

Let q ∈ C be the complete specification of the degrees of freedom for a robot, where
C is the set of all possible configurations. Let O be the set of obstacles, and Cobs ⊆ C
be the set of configurations in collision with O. Let Cfree = C \ Cobs be the set of
configurations that are not in collision. Let q̇ and q̈ be the first and second derivatives
of the configuration. Let aee ∈ R3 be the linear acceleration of the end effector with
one or more suction cups holding a known object b, and n̂ ∈ R3 be the suction cup
normal, as shown in Fig. 4

Given a start q0 and goal qgoal configuration, the objective of GOMP-ST is to com-
pute a trajectory τ = (x0,x1, . . . ,xH), where xt = (qt, q̇t, q̈t) ∈ X is the state of the
robot at time t, X is the set of states, such that qt ∈ Cfree ∀t ∈ [0, H], and q̇ and q̈ are
within the box-bounded dynamic limits of the robot, and qH = qgoal. The object b will
remain attached throughout the motion. As with GOMP, start and goal configurations
may also be expressed via forward kinematics and bounds on degrees of freedom.

4 Method

GOMP-ST learns a suction cup acceleration constraint via a sequence of physical ex-
periments, then integrates it with a time-optimizing motion planner. See Fig. 2 for an
overview. This section starts with background on the prior work, then describes how to
learn and integrate the constraint into the motion planner.

4.1 Background: GOMP-FIT

The GOMP-FIT [11] algorithm formulates a fast-inertial-transport motion planning as
an optimization problem and solves it with sequential quadratic program (SQP) trust-
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region-based solver. It first discretizes the trajectory into a sequence of H+1 waypoints
(x0, . . .xH) that are each separated by a fixed time interval tstep. Each waypoint xt in-
cludes the configuration and its first and second derivatives xt = (qt, q̇t, q̈t). The outer
loop shrinks H to find a minimum time trajectory. The inner loop solves an SQP where
the optimization objective minimizes the sum-of-squared accelerations, the linear con-
straints keep the motion within the kinematic and dynamics limits of the robot, and the
non-linear constraints avoid obstacles and limit linear accelerations experienced at the
end-effector. To limit shock, it constrains the magnitude of end-effector acceleration to
be below a threshold asafe. To avoid spills, it constrains the angle between the container
normal and the acceleration to be below a spill threshold θspill. The optimization is

min
x[0..H]

1

2

H∑
t=0

q̈t

s.t. xmin ≤ xt ≤ xmax ∀t ∈ [0..H]

qt+1 = qt + q̇ttstep +
1

2
q̈tt

2
step ∀t ∈ [0..H)

q̇t+1 = q̇t + q̈ttstep ∀t ∈ [0..H)

fO(q) ≥ 0 ∀t ∈ [0..H]

cos−1(fa(q, q̇, q̈) · fn) ≤ θspill ∀t ∈ [0..H]

∥fa(q, q̇, q̈)∥ ≤ asafe ∀t ∈ [0..H],

where fO : C → R is the signed distance from robot to set O (thus implementing
the constraint qt ∈ Cfree) and fa : (C)3 → R3 is the linear acceleration at the end-
effector computed using the Recursive Newton-Euler (RNE) algorithm. Additionally,
GOMP-FIT optionally integrates constraints to optimize the grasp angle and location.

The SQP solver repeatedly linearizes the non-linear constraints (collision, end-
effector acceleration, and grasp) to form a quadratic program (QP), and solves the QP,
accepting solutions that improve the trajectory. In this optimization, when solving for
the (k+1) iterate, a non-linear constraint of the form g(x) ≤ y is linearized around the
current iterate x(k) via a first-order approximation using its Jacobian:

Jx(k+1) ≤ y − g(x(k)) + Jx(k).

GOMP-FIT optimizes the trajectory time by repeatedly solving the SQP with a
shrinking horizon H , warm-starting each subsequent SQP solve with an interpolation
of the solution from the prior horizon. The optimization terminates the smallest H the
solver detects as feasible. However, when executed on robots with suction grippers, the
resulting motions can lead to suction failures.

4.2 Learned constraints in the SQP

Maintaining a suction grasp throughout a high-speed motion requires balancing suction
forces against inertial forces while the suction cups deform under strain. GOMP-ST
defines a series of physical experiments to learn a constraint from real-world data. We
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(a) Suction cup deformation before and during suction break. (b) Vertical lift motion

Fig. 3: Suction cup deformation observed with data collection. (a) These frames from a slow-
motion video show the deformation of suction cups as the gripper is rapidly pulled upward. At
the beginning of the motion ((a) top), the suction cups compress against the grasped surface. As
the gripper lifts and starts to break from suction ((a) middle), the suction cups deform but still
maintain a seal. Continuing to pull away results in a suction grasp failure ((a) bottom). (b) During
data collection, the robot lifts the mass with a vertical motion while grasping at an angle.

model the learned constraint as a function gθ : (X )h → [0, 1] parameterized by θ,
where (X )h is history of h dynamic states, and a value of 0 indicates the object is held,
while a value of 1 indicates a failure. (Notationally, we use h to indicate a history of
states, and H to indicate the total trajectory length.)

We integrate this function into the optimization as a non-linear constraint:

gθ(·) ≤ dsafe,

where the argument is a portion of the state from of the trajectory being optimized, and
dsafe ∈ [0, 1) is a tunable failure threshold. To linearize this constraint for the SQP, we
use the automatic gradients (Autograd) provided by a neural-network package [5] to
compute the Jacobian.

Using slow-motion video capture, we observe that suction cups deform before suc-
tion failure (Fig. 3), and thus failures are not an instantaneous response to a change in
end-effector state. With this observation, we propose that gθ should be a function of a
sequence (or history) of states of length h. The value of h depends on the geometry
and material of the suction cup. In a series of experiments we set h to be long enough
to capture the time between deformation start and suction failure that we observe from
slow-motion video playback (> 0.1 seconds). Further, to translate the optimization vari-
ables from the state of the robot to the state of the end-effector, we utilize RNE function
fa for each state in the history. Thus we formulate the full constraint as:

gθ(fa(xt−h+1), . . . , fa(xt−1), fa(xt)) ≤ dsafe ∀t ∈ [1..H).

When x has a negative subscript (i.e., it refers to a state before the start of planning),
we replace it with x0.
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4.3 Self-supervised data collection and training

To learn gθ, GOMP-ST implements a self-supervised pipeline that defines a series of
experiments to lift objects of known mass and collect data. We attach a pressure sensor
to the tube connected to the suction cups, similar to Huh et al. [10]. To minimize de-
lay between pressure changes and pressure readings, we place the sensor close to the
suction cups. During each lift, the pipeline records the joint state and pressure sensor
readings over time.

To isolate gravity during data collection, the system always lifts against gravity
while varying the angle of the suction normal (see Fig. 3). As convention, 0◦ is a top-
down grasp and 90◦ is a grasp in which the suction normal is perpendicular to gravity.

The pipeline computes each lift motion using Ruckig [4] between two points in
end-effector (Cartesian) coordinates, and uses an inverse kinematics solver to translate
into joint configurations. Ruckig computes straight-line time-optimal motions subject
to velocity, acceleration, and jerk limits. During data collection, GOMP-ST varies the
motion profile by changing the maximum acceleration amax and maximum jerk jmax

parameters of Ruckig.
The pipeline defines a discretized grid with amax and jmax axes to fill with values 0

or 1 labels. To reduce data collection time, GOMP-ST performs a boundary search on
the motion profiles. It starts with a fixed lower value of amax and increases jmax until
it observes a change in the pressure measurements indicating a suction grasp failure.
Afterwards, it iteratively decreases jmax or increases amax so that it is always exploring
the above and below the continuous boundary at which suction fails.

After a suction failure, the automated data collection pipeline takes a top-down
image of the scene to find and re-grasp the target object. After confirming the grasp
using the pressure measurements, GOMP-ST moves the object to a consistent starting
pose before performing the next lift.

The pipeline then trains a multi-layer perceptron with exponential linear units (ELU)
activations using the joint and pressure data it collected. We choose ELU for its contin-
uous gradients. Training details are in the experiments section. The pipeline scans the
recorded pressure data to find the time at which suction pressure is lost. It then tracks
a tunable number of steps h back to create a labeled data point containing h acceler-
ations that led to the suction failure (labelled as 1). All sequences of h accelerations
prior to the suction failure, or in records without suction failures, the pipeline labels
as 0. GOMP-ST further perform data augmentation by scaling accelerations leading to
failures by 1 + ϵ, and non-failures by 1− ϵ, for small positive values of ϵ.

4.4 Analytic model of suction-cup failure for GOMP-FIT baseline

As a baseline to the learned model, we compare GOMP-ST to GOMP-FIT where its
constraint on the magnitude and direction of the inertial acceleration vector is provided
by an analytic model. In previous work, Kolluru et al. [16] and Stuart et al. [36] pro-
posed analytic models for rigid suction cups, but were limited to either single suction
cups or symmetrical systems. Our analysis is more closely related to the more general
method used by Valencia et al. [38] and Pham and Pham [30] which generalises over
multiple suction cups and asymmetric loads, though still with the assumption of rigid
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bodies. We also choose the rigid-body assumption as opposed to for example the spring
model suggested by Mahler et al. [26], since a spring model of suction cups where
quasi-static equilibrium is not assumed would require knowledge about the state of the
springs. Alternatively, if quasi-static equilibrium is assumed, the state of the springs
may be estimated, but the purpose of the additional complexity is defeated from a mo-
tion planning perspective as the resulting constraint would be equivalent to that of a
rigid-body model. In this work, the analytic model makes the following assumptions:

1. There are quasi-static conditions in inertial frame, enabling equilibrium analysis.
2. The suction cups are rigid and modelled as point contacts.
3. The transported object is a rigid rectangular cuboid with uniform mass distribution

such that its center of mass corresponds to its centroid.
4. There are no air leaks between the suction cups and flat grasping surface, which

results in a static and equal suction force across all suction cups.

Consider the free-body diagram in the inertial frame of the object shown in Fig. 4,
where fs,i are the suction forces, fn,i are the contact forces between the suction cups
and grasped object, ff,i are the friction forces, fg is the gravitational force, and a is
the acceleration from a balance of forces. n̂obj is the unit length (denoted by the hat)
normal defining the grasping plane, and θ = cos−1 [(a · n̂obj)/(||a||2||n̂obj||2)] is the
angle between the inertial acceleration vector and suction force normal. In the idealised
condition, fs,i = (patm−pv)A, where patm−pv is the difference between atmospheric
pressure patm and applied vacuum pressure pv , and A is the effective area of grip for a
single suction cup. Furthermore, under the assumption of dry Coulomb friction, ff,i ≤
µfn,i, where µ is the static coefficient of friction between the grasped object and suction
cups. Finally, fg = mg, where m is the object mass, g is the gravitational acceleration.

We define 2 models, unimodal and multimodal. The unimodal model assumes θ =
0◦, and thus the maximum inertial acceleration before grasp failure is trivially given
by afail =

1
m

∑
i fs,i. The multimodal model includes multiple failure modes for cases

where θ ̸= 0◦, including suction grasp failure by sliding, force imbalance, or moment
imbalance. This model does not include deformation. The analysis uses the equations∑

i

fs,i +
∑
i

fn,i +
∑
i

ff,i + fg = ma (1)∑
i

ri × fs,i +
∑
i

ri × fn,i +
∑
i

ri × ff,i = 0 (2)

fn,i = −αi · n̂obj (3)

f̂f,i = − ̂projn̂obj
(fg) (4)

ff,i = βi · f̂f,i (5)

(ff,i · f̂f,i) = γ · fn,i · (−n̂obj). (6)

The force (1) and moment (2) balance in quasi-static equilibrium, where ri is the po-
sition vector from the object center of mass to the application of forces point for the
ith suction cup. We then require the reaction forces fn,i to be normal to the grasping
plane (3), set the direction of the friction forces to be tangent in the grasping plane and
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Fig. 4: Analytic model of suction cup failure (a): A set of suction cups (light blue) hold the gray
object, where the suction surface normal is a vector n̂ (not shown) that is always aligned with the
vector n̂obj. The suction forces fs,i apply the same suction force at each suction contact, while
the normal forces fn,i react unevenly based on the tilt angle θ relative to inertial acceleration and
gravity fg . The green arrow indicates the unit normal direction vector, and all other arrows are
force vectors. Under the unimodal model θ = 0◦. Under the multimodal model θ can vary. (b)
shows the acceleration magnitude drop boundaries in the sliding and moment imbalance failure
modes for varying angles θ between the inertial acceleration a and the suction normal n̂obj.
Suction fails for accelerations in the region above the blue curve in the model. We generate this
plot by solving the system of equations (1) – (6) with a combination of angles and accelerations.
For the parameters such as object dimensions and friction coefficient of our system, sliding will
always occur before moment imbalance.

opposing the direction of the motion in its absence (4), (5), and require that the friction
force magnitudes share the same proportionality constant γ to the normal forces (6).

We solve the system of equations for a range of hypothetical angles θ and accelera-
tions a, and classify each scenario as a failure or a success based on the physical restric-
tions that βi ≤ µαi and αi ≥ 0, where αi and βi are the magnitudes of the normal and
frictional forces, respectively. The result of this simulation is shown in Fig. ??, which
shows that the multimodal model converges with the unimodal model when θ → 0+,
and that in contrast to intuition, the curve is not strictly increasing nor strictly decreas-
ing across the domain. The inputs used to generate the curve use dimensions from our
experimental setup, and so the exact axes values do not generalise to other systems.
To integrate the model with GOMP-FIT, we approximate the curve using a 4th-order
polynomial fit, which we then use to formulate an analytic baseline constraint.

5 Experiments

We perform experiments on a physical UR5 with a custom 4-cup vacuum gripper and
a set of steel blocks. The gripper has four round 30 mm diameter elastodur flat suction
cups driven by a single VacMotion MSV 27 vacuum generator. Multi-cup suction grip-
pers are common in many commercial automated logistics systems due to the increased
surface area producing more suction force, and the multiple contact point stabilizing the
hold resulting in reduced payload swing. The pressure sensor (Adafruit MPRLS Ported
Pressure Sensor Breakout) is fitted in the gripper assembly and attached via USB to
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Fig. 5: Suction gripper with four suction cups and pressure sensor outlet. In the custom suc-
tion gripper (right), the suction is distributed to the four suction cups using branching connectors
from the pneumatic tube where a vacuum/negative pressure is applied, as shown in the analogous
circuit diagram (left). A single pressure sensor is used to measure the applied pressure. In the case
of a successful suction grasp, all four switches are open, and so no current/air flows, implying the
applied pressure/voltage is equal for all four suction cup regardless of differing resistor values.

horizontal distance

obstacle

1.3 kg

1.5 kg

1.6 kg

1.7 kg

2.0 kg

metal
sheets

Fig. 6: Experimental setup In experiments, (left) we compute trajectories for varying horizontal
transport distances, and average the results. Shorter distances require lifting faster, while longer
distances can lift more gradually. We train and test on masses (right) composed of stacked steel
blocks and sheets. We do not train on the 1.6-kg mass to test generalization to unseen masses.

the computer that drives the UR5. See Fig. 1 for a visual of the experimental setup and
Fig. 5 for a close-up of the suction gripper.

We first perform data collection and train (Sec. 4.3) on four different masses, 1.343-,
1.492-, 1.741-, and 2.196-kg steel blocks (Fig. 6 right), which we round to 1.3, 1.5, 1.7,
and 2 kg hereafter. We then test GOMP-ST and baselines by computing trajectories be-
tween varying start and goal positions and around varying obstacles. We automate data
collection by using an overhead Intel RealSense 435i to locate the mass after suction
failures. We use a relatively heavy mass to lower the end-effector accelerations required
for a lost grasp, and for safety as a lost grasp results in the released object having lower
kinetic energy Ek, since Ek = (1/2)mv2, and thus do not fly out of the workspace.

We set the automated system to collect training data for each of the four training
masses, resulting in 2,367 training trajectories. We perform an 80/20 train/test split
on the trajectories, data-augment failures 30× and non-failures 4× in the training set.
With the UR5 operating and generating joint data at a 125 Hz, and the pressure sensor
operating at 167 Hz, this results in 597,010 training examples and 19,892 test examples.

With 15 trials each, we compare to baselines of J-GOMP, an optimizing motion
planner that does not include inertial effects, and GOMP-FIT, an extension of J-GOMP
that allows constraints on the linear acceleration at the end-effector. We include 2
GOMP-FIT baselines in which we limit magnitude of end-effector acceleration using
the unimodal model and multimodal model.
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Table 1: Object transport success rate and motion time. We compute 3 pick-and-place mo-
tions with 0.8, 0.9, and 1.0 m horizontal separation between pick and place points, and perform
each motion 5 times, for a total of 15 trials per algorithm and mass. For algorithms, we use J-
GOMP as a time-optimized, but not suction-constrained baseline to show a lower bound on time,
GOMP-FIT with analytic constraints on end-effector acceleration, and GOMP-ST with varying
history length h, and failure threshold dsafe. Masses 1.3, 1.5, and 1.7 were seen at train time;
mass 1.6 was not. We highlight multimodal GOMP-FIT and GOMP-ST (h = 6, dsafe = 0.50),
and compare the relative speedup, observing that only 1 of the 60 trials for GOMP-ST failed,
while GOMP-ST speeds up between 16 % and 58 %.

Mass J-GOMP GOMP-FIT GOMP-ST (h, dsafe) Speedup
[kg]

Unimodal Multimodal (1, 0.50) (6, 0.05) (6, 0.50) (6, 0.95)

Success Rate
1.3 0 % 0 % 100 % 0 % 100 % 100 % 0 %
1.5 0 % 0 % 100 % 0 % 100 % 100 % 66.7 %
1.6* 0 % 0 % 100 % 0 % 100 % 93.3 % 100 %
1.7 0 % 33.3 % 100 % 0 % 100 % 100 % 33.3 %

Motion Time [s]
1.3 1.355 1.333 2.304 1.440 2.637 1.931 1.728 +16 %
1.5 1.355 1.387 2.827 1.525 2.763 1.984 1.781 +30 %
1.6* 1.355 1.472 2.827 1.643 2.795 1.807 1.781 +36 %
1.7 1.355 1.728 4.459 1.173 2.432 1.856 1.792 +58 %
* mass unseen in training.

5.1 Ablation studies

We perform two ablation studies on GOMP-ST. First, we compare history length of h =
1 to h = 6, to study the importance of the motion history relative to single acceleration
spikes in the motion. We also compare different values of the failure threshold dsafe to
study the potential for making a trade-off between speed and reliability.

5.2 Results

We vary the horizontal distance between start and goal configurations and compute tra-
jectories for each baseline and variant of GOMP-ST (Fig. 6 left). Each trajectory lifts
over an obstacle, thus the shorter horizontal distance (0.8 m) requires more vertical mo-
tion, while the longer horizontal distance (1.0 m) results in a period of longer horizontal
acceleration. We also vary the masses, using 3 masses that were seen during training
(1.3 kg, 1.5 kg and 1.7 kg) and a single mass that was not used during the data collection
(1.613 kg, rounded to 1.6 kg). We run each computed trajectory 5 times and report the
average success rate and motion time per transported mass as the experiment’s result.

In Table 1, we show the results of trajectories computed by the baselines and ab-
lations. Here we see that the J-GOMP and the GOMP-FIT unimodal baselines con-
sistently compute motions that lead to suction failures. GOMP-FIT multimodal man-
ages to compute safe motions, however the resulting trajectories are slow. In contrast,
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Fig. 7: Computed trajectory times for varying dsafe and payload mass. We compute trajecto-
ries for a grid of dsafe and masses shown on the lower axes, and plot the trajectory times on the
vertical axis. With lower dsafe or higher mass, the learned suction failure constraint causes the
optimizer to generate slower motions. The masses used for training (1.3, 1.5, 1.7, and 2.0 kg) are
in bold. The plot suggests that the network generalizes to unseen masses.

GOMP-ST with h = 6 and d = 0.05 reliably achieves a 100 % success rate, while the
baseline method suction grasps fail in nearly all cases. It is also 16 % to 58 % faster
than multimodal GOMP-FIT. The ablation of h = 1 shows the importance of history
in learning the constraint—without it, GOMP-ST consistently computes motions that
lead to suction failures. In the ablation of dsafe, we see that lower thresholds result in
increased success rate, but reduced speed, while the increased dsafe results in faster mo-
tions and decreased success rate. In addition, we observe that GOMP-ST’s performance
when transporting a mass unseen during training (m = 1.6 kg) is comparable with its
performance on the objects used during the data collection.

We also study trajectories computed with the learned constraint by varying the mass
and dsafe and plotting the results in Fig. 7. The plot suggests that the network is inter-
polating between training masses.

6 Conclusion

We propose GOMP-ST, an algorithm using learned motion constraints for fast transport
of objects held in suction grasps. By learning the constraint from real data, we avoid ex-
plicitly modeling difficult-to-model properties such as deformation of the suction cup.
We also benefit from the learned model neural-network implementation, as it facilitates
automatic generation of gradients needed to linearize the constraint for the solver. Ex-
periments on a physical UR5 suggest that the learned constraint can allow the solver to
speed up motions by up to 58 %.

In future work, we will experiment with more complex environments, and include
additional inputs to the learned constraint to allow it to adapt to different properties of
the grasped object, for example, coefficient of friction and center of mass. We also aim
to expand the analytic model to no longer be dependent on quasi-static equilibrium or
rigid bodies, and therefore include spring state to the state of the trajectory optimization.
While there are compelling reasons to move away from single-suction-cup grippers,



they present additional suction failure modes, such as swinging and torquing out of
the gripper. Addressing these failure modes may require additional approaches, such as
integration with sampling-based optimization methods. Finally, results in modifying the
failure threshold suggest that one could make a trade-off between speed and reliability,
but how to beneficially make that trade-off is an open issue.

Acknowledgments
This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI
Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent Secure Execution
(RISE) Lab, and the CITRIS “People and Robots” (CPAR) Initiative. We thank our colleagues
for their helpful feedback and suggestions. We thank Tae Myung Huh and Michael Danielczuk
for their invaluable advice. We thank Adam Lau for his professional photography. We thank
Adam Rashid for his help running the physical robot. This article solely reflects the opinions and
conclusions of its authors and do not reflect the views of the sponsors or their associated entities.

Bibliography

[1] Acharya, P., Nguyen, K.D., La, H.M., Liu, D., Chen, I.M.: Nonprehensile manip-
ulation: a trajectory-planning perspective. IEEE/ASME Transactions on Mecha-
tronics 26(1), 527–538 (2020)

[2] Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model
complex real-world problems. In: International Conference on Principles and
Practice of Constraint Programming. pp. 115–129. Springer (2011)

[3] Bernheisel, J.D., Lynch, K.M.: Stable transport of assemblies: Pushing stacked
parts. IEEE Transactions on Automation science and Engineering 1(2), 163–168
(2004)

[4] Berscheid, L., Kröger, T.: Jerk-limited real-time trajectory generation with arbi-
trary target states. arXiv preprint arXiv:2105.04830 (2021)

[5] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., et al.: JAX: Auto-
grad and XLA. Astrophysics Source Code Library pp. ascl–2111 (2021)

[6] De Raedt, L., Passerini, A., Teso, S.: Learning constraints from examples. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

[7] Fajemisin, A., Maragno, D., Hertog, D.d.: Optimization with constraint learning:
A framework and survey. arXiv preprint arXiv:2110.02121 (2021)

[8] Ha, H., Song, S.: FlingBot: The unreasonable effectiveness of dynamic manipula-
tion for cloth unfolding. In: Conference on Robotic Learning (CoRL) (2021)

[9] Hauser, K.: Fast interpolation and time-optimization with contact. The Interna-
tional Journal of Robotics Research 33(9), 1231–1250 (2014)



GOMP-ST: Grasp Optimized Motion Planning for Suction Transport 15

[10] Huh, T.M., Sanders, K., Danielczuk, M., Li, M., Goldberg, K., Stuart, H.S.: A
multi-chamber smart suction cup for adaptive gripping and haptic exploration.
arXiv preprint arXiv:2105.02345 (2021)

[11] Ichnowski, J., Avigal, Y., Liu, Y., Goldberg, K.: GOMP-FIT: Grasp-optimized
motion planning for fast inertial transport. In: 2022 International Conference on
Robotics and Automation (ICRA). IEEE (2022), (to appear)

[12] Ichnowski, J., Avigal, Y., Satish, V., Goldberg, K.: Deep learning can accelerate
grasp-optimized motion planning. Science Robotics 5(48) (2020)

[13] Ichnowski, J., Danielczuk, M., Xu, J., Satish, V., Goldberg, K.: GOMP: Grasp-
optimized motion planning for bin picking. In: 2020 International Conference on
Robotics and Automation (ICRA). IEEE (May 2020)

[14] Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP:
Stochastic trajectory optimization for motion planning. In: 2011 IEEE interna-
tional conference on robotics and automation. pp. 4569–4574. IEEE (2011)

[15] Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps
for path planning in high dimensional configuration spaces. IEEE Trans. Robotics
and Automation 12(4), 566–580 (1996)

[16] Kolluru, R., Valavanis, K., Hebert, T.: Modeling, analysis, and performance eval-
uation of a robotic gripper system for limp material handling. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 28(3), 480–486 (1998)

[17] Kudła, P., Pawlak, T.P.: One-class synthesis of constraints for mixed-integer linear
programming with c4. 5 decision trees. Applied Soft Computing 68, 1–12 (2018)

[18] Kuntz, A., Bowen, C., Alterovitz, R.: Fast anytime motion planning in point clouds
by interleaving sampling and interior point optimization. Robotics Research pp.
929–945 (2020)

[19] LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and
prospects. In: Donald, B.R., Others (eds.) Algorithmic and Computational
Robotics: New Directions, pp. 293–308. AK Peters, Natick, MA (2001)

[20] Lim, V., Huang, H., Chen, L.Y., Wang, J., Ichnowski, J., Seita, D., Laskey, M.,
Goldberg, K.: Planar robot casting with Real2Sim2Real self-supervised learning.
arXiv preprint arXiv:2111.04814 (2021)

[21] Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Ar-
tificial Intelligence 244, 343–367 (2017)

[22] Luh, J.Y., Walker, M.W., Paul, R.P.: On-line computational scheme for mechanical
manipulators (1980)

[23] Luo, J., Hauser, K.: Robust trajectory optimization under frictional contact with
iterative learning. Autonomous Robots 41(6), 1447–1461 (2017)

[24] Lynch, K.M., Mason, M.T.: Dynamic underactuated nonprehensile manipulation.
In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems. IROS’96. vol. 2, pp. 889–896. IEEE (1996)

[25] Lynch, K.M., Mason, M.T.: Dynamic nonprehensile manipulation: Controllability,
planning, and experiments. The International Journal of Robotics Research 18(1),
64–92 (1999)

[26] Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., Goldberg, K.: Dex-Net 3.0: Com-
puting robust vacuum suction grasp targets in point clouds using a new analytic
model and deep learning. In: 2018 IEEE International Conference on robotics and
automation (ICRA). pp. 5620–5627. IEEE (2018)



16 Avigal et al.

[27] Maragno, D., Wiberg, H., Bertsimas, D., Birbil, S.I., Hertog, D.d., Fa-
jemisin, A.: Mixed-integer optimization with constraint learning. arXiv preprint
arXiv:2111.04469 (2021)

[28] Mucchiani, C., Yim, M.: Dynamic grasping for object picking using passive zero-
dof end-effectors. IEEE Robotics and Automation Letters 6(2), 3089–3096 (2021)

[29] Park, C., Pan, J., Manocha, D.: ITOMP: Incremental trajectory optimization for
real-time replanning in dynamic environments. In: Twenty-Second International
Conference on Automated Planning and Scheduling (2012)

[30] Pham, H., Pham, Q.C.: Critically fast pick-and-place with suction cups. In: 2019
International Conference on Robotics and Automation (ICRA). pp. 3045–3051.
IEEE (2019)

[31] Pham, Q.C., Caron, S., Nakamura, Y.: Kinodynamic planning in the configuration
space via admissible velocity propagation. In: Robotics: Science and Systems.
vol. 32 (2013)

[32] Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: Gradient optimiza-
tion techniques for efficient motion planning. In: 2009 IEEE International Confer-
ence on Robotics and Automation. pp. 489–494. IEEE (2009)

[33] Ruggiero, F., Lippiello, V., Siciliano, B.: Nonprehensile dynamic manipulation: A
survey. IEEE Robotics and Automation Letters 3(3), 1711–1718 (2018)

[34] Schulman, J., Ho, J., Lee, A.X., Awwal, I., Bradlow, H., Abbeel, P.: Finding lo-
cally optimal, collision-free trajectories with sequential convex optimization. In:
Robotics: Science and Systems. pp. 1–10 (2013)

[35] Srinivasa, S.S., Erdmann, M.A., Mason, M.T.: Using projected dynamics to plan
dynamic contact manipulation. In: 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems. pp. 3618–3623. IEEE (2005)

[36] Stuart, H.S., Bagheri, M., Wang, S., Barnard, H., Sheng, A.L., Jenkins, M.,
Cutkosky, M.R.: Suction helps in a pinch: Improving underwater manipulation
with gentle suction flow. 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) pp. 2279–2284 (2015)

[37] Toussaint, M.: Newton methods for k-order markov constrained motion problems.
arXiv preprint arXiv:1407.0414 (2014)

[38] Valencia, A.J., Idrovo, R.M., Sappa, A.D., Guingla, D.P., Ochoa, D.: A 3d vision
based approach for optimal grasp of vacuum grippers. In: 2017 IEEE International
Workshop of Electronics, Control, Measurement, Signals and their Application to
Mechatronics (ECMSM). pp. 1–6 (2017)

[39] Wang, C., Wang, S., Romero, B., Veiga, F., Adelson, E.: SwingBot: Learning
Physical Features from In-hand Tactile Exploration for Dynamic Swing-up Ma-
nipulation. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS) (2020)

[40] Zeng, A., Song, S., Lee, J., Rodriguez, A., Funkhouser, T.: TossingBot: Learning
to throw arbitrary objects with residual physics. IEEE Transactions on Robotics
36(4), 1307–1319 (2020)

[41] Zhang, H., Ichnowski, J., Seita, D., Wang, J., Goldberg, K.: Robots of the lost arc:
Learning to dynamically manipulate fixed-endpoint ropes and cables. In: Proc.
IEEE Int. Conf. Robotics and Automation (ICRA) (2021)


	GOMP-ST: Grasp Optimized Motion Planning for Suction Transport

