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Abstract. Shepherding is the problem of guiding a group of passive
sheep agents (a flock) from some start position to a goal region by in-
fluencing the sheep motion with active guiding agents (the shepherds).
Existing solutions are limited, as heuristic solutions are often designed
and tuned for specific environments and flock dynamics, while learn-
ing solutions are often limited to a single shepherd and/or few sheep
agents, fixed flock dynamics, discrete environments, or rely on tuning
of heuristic solutions. In order to provide a more general shepherding
solution, we contribute a mapping of this problem to a previously ad-
dressed planning problem, active agents protecting a moving payload
from passive agents in a crowd. This inversion of an existing solution
directly facilitates the creation of a deep reinforcement learning (deep
RL) model that provides cooperation between multiple shepherd agents,
shows robustness to changes in flock dynamics, and requires no prede-
fined shepherding strategy. We experiment on the effect of varying the
number of sheep agents and the number of shepherd agents to gauge
the performance and scaling of each method. We also test our method’s
robustness to positional observation noise and changed flock dynamics
both with and without re-training. The experiments show that our deep
RL solution shepherds as well as tuned heuristic methods, often with a
reduced path length of the shepherds. Our solution also exhibited ro-
bustness to environmental situations that were unseen during training
and high adaptability with simple re-training.

Keywords: Shepherding, Motion Planning, Deep Reinforcement Learn-
ing

1 Introduction

Shepherding is a difficult planning problem where passive agents (a flock) are
navigated via forces induced by one or more external agents (shepherds) [1–
3]. This problem has been explored with single [2] and multiple [3] shepherd
agents, environments with obstacles [4], and in discrete [5–7] and continuous [8,
9] state and action spaces. Besides the obvious contribution to agriculture [1],
the shepherding problem has also been extensively researched for its practical
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application in several other fields, such as security [10], crowd control [11] and
environmental protection [12].

Many solutions have been proposed to solve the shepherding problem. Exam-
ples include mimicking real life shepherding behavior [13], heuristic rule-based al-
gorithms [3, 14] and machine learning solutions [1, 4]. Heuristic rule-based meth-
ods are simple to implement and scale with flock size, but are sensitive to changes
in the environment and agent dynamics. Learning-based methods on the other
hand are more resilient to those changes [4]. However, existing learning solutions
have several limitations including limited agent counts, predefined dynamic-
specific strategies, discrete environments, and the need for precise observations
and knowledge of all agent positions.

In our previous work, Payload Protection , we devised a framework using deep
reinforcement learning (deep RL) to train a team of active agents to protect
a moving object in a crowded environment from passive moving agents [15].
This solution provided scalability and utilized limited observations in the active
agents. In this work, we adapt the protection framework to instead guide a flock
of passive sheep agents towards a goal region. We show that by mapping the
Markov Decision Process formulation (MDP) and adjusting the reward structure
accordingly, the agents can learn the new task using the same network structure,
environment, and action spaces used in previously.

We contribute an adaptation of an existing solution for active multi-agents
influencing passive agents. We compare the performance of our method to two
baseline heuristic methods and evaluate success, path lengths, flock spread, and
completion time with varying shepherd and flock counts, as well as with changes
in the dynamics and observations. Results demonstrate that our deep RL method
successfully completes the task and is robust against changes in agent counts,
environment noise, and changes in dynamics.

2 Related Work

Many solutions to the shepherding problem have explored rule- and heuristic-
based behaviors for both single and multiple shepherd agents. Some methods
constructed rule sets to mimic the behavior of real-life sheepdogs by directing
a single shepherd to switch between predefined behaviors of driving and col-
lecting [2, 14]. Most extensions of these behaviors to multiple shepherds direct
groups of shepherds either explicitly or implicitly to form arcs and lines [3, 16,
17] or circles behind or around flocks [13, 18–20]. Nearly all of the rule-based
methods rely on complete knowledge of the flock center of mass or the exact po-
sitions of all sheep agents. Our method and the solution from Lee and Kim [16]
use local information gathered in a limited sensing range. However, the latter
solution uses a predefined algorithm that relies on manual parameter tuning
while our method does not rely on predefined shepherd behaviors or formations.

The shepherding problem has also been tackled with learning-based solu-
tions. Some reinforcement learning solutions for the classic shepherding problem
have been found, but are limited considering they use only one shepherd and
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have small flock sizes (n ≤ 3) [4, 21, 22]. Reinforcement learning has been shown
to be capable of handling multiple agents [23, 24], and many learning solutions
for the shepherding problem do use multiple shepherds. However, those methods
often rely on given information like a base strategy for optimization or steer-
ing points for path guidance [8, 9, 25, 22]. Learning solutions for shepherding
have been explored using discretized environments and action spaces [5–7, 21].
Non-traditional shepherding scenarios have also been explored, such as the use
of adversarial sheep agents [26], or goals of capture/elimination of sheep rather
than occupancy of a specific region [27, 28]. In contrast with previously presented
learning methods, our work addresses the classic multi-agent shepherding prob-
lem for large flock sizes and goal regions in continuous space, while avoiding the
use of predefined strategies for shepherd behavior.

Most shepherding literature uses flock dynamics inspired by one of two mod-
els. One is the Reynolds ‘boids’ model, which uses three simple rules (separation,
cohesion and velocity-matching) to produce life-like behavior in swarms [29].
Another is the Strömbom method, which models reactions of sheep agents to
repulsive forces from shepherd agents [14]. This work focuses on the Strömbom
dynamics model because of its direct relationship to the shepherding problem,
but we also demonstrate that models can be trained to work on the Reynolds
dynamics without changes in reward structure.

3 Problem Formulation

Our solution for the shepherding problem is based on our prior formulation of
payload protection [15], which addresses the task of controlling homogeneous
active agents (escorts, Fig. 1b, blue dots) to influence the movement of passive
pedestrian agents (obstacles, Fig. 1b, gray dots) and prevent them from entering
or colliding with the moving critical region (payload, Fig. 1b, filled orange circle).
We represented the problem as a Multi-Agent Partially Observed Markov Deci-
sion Process (MA-POMDP), in the form of the tuple (S,AN ,O, R, T , ρ,N ,K, γ),
where S is the state space, AN is the action space for the escorts, O is the set
of observations, R is the reward structure, T is the transition function, ρ is the
observation probability, N ,K are the sets of escorts and obstacles, and γ is the
discount factor. The reward structure R engineered to solve the problem con-
sisted of a penalty for obstacles colliding and breaching the payload region, and
a reward for the payload reaching the goal.

The Shepherding Problem

Shepherding is the task of controlling one or more active agents (the shepherds)
to guide a flock of homogeneous passive agents (the sheep) towards a critical
region (the goal). The shepherd agents are controlled by some shared policy ,
and are represented by holonomic point particles (Fig. 1a, blue dots). The sheep
are also represented by point particles (Fig. 1a, gray dots) and move according
to flock dynamics that dictate how the herd reacts to other agents’ positions
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(a) Shepherding environment (b) Payload Protection environment

Fig. 1: The problem environments. The fundamental similarities in state, obser-
vation, and action spaces between the two environments motivates repurposing
the solution from (b) to solve (a). (a) Shepherding environment with the sheep
as gray dots, shepherds as blue dots, and the goal area as a filled orange circle.
(b) Payload protection environment, with the moving obstacles as gray dots, the
escorts as blue dots, and the payload as a filled orange circle.

and movements. We focus the majority of our work on dynamics that mimic real
sheep [14], but the flock can use other dynamics models such as bird flocking [29].
The goal in this work is a circular goal region (Fig. 1a, orange circle).

We present the shepherding problem as a case of payload protection where the
active agents should move the passive agents into a stationary payload region. By
engineering a reward structure that motivates this inverted task, we can utilize
the same deep RL framework from payload protection to approximate a policy
for the shepherding problem. We map the set of escorts N to the set of shepherd
agents H, the obstacles K to the set of sheep agents F , and the payload p to
the goal g. The observation O, state S, action spaces A, conditional observation
probability ρ and discount factor γ stay the same across both problems. The state
transition T then represents the dynamics of the shepherding problem, and the
reward R is adjusted as previously mentioned. Thus the shepherding problem can
also be represented as a MA-POMDP with tuple

(
S,AH,O, R, T , ρ,F ,H, γ

)
. At

a given time, sg ∈ SG , sf ∈ SF , and sh ∈ SH are the states of the goal region,
the f -th sheep agent, and the h-th shepherd agent. The state space S of the
system is given by S ≡ Sgg∈G × Sf f∈F × Shh∈H.

At each step, for a given state s ∈ S, the shepherd agent h ∈ H receives
an observation oh ∈ Oh, determined by the conditional observation probability
ρ (s, oh) = P (oh | s). The shepherd takes an action ah ∈ Ah given by a policy,
πθ (oh, ah), with parameters θ. Given actions from all shepherd agents, a joint
action ahh∈H = a ∈ AH is formed which induces transition in the environment
according to the state transition function T (s, a, s′) = P (s′ | s, a).

The observation of the h-th shepherd agent is a 1D simulated lidar with 512
rays equally distributed radially from the shepherd agent’s center. Each ray has
three channels: one for sheep agents, one for shepherd agents, and one for the
goal region. Each ray channel returns the distance to the nearest circular surface
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of an object of the channel’s type along that ray, up to a maximum distance of
75m. The range is chosen to be comparable to previous work [14, 13] with global
vision for shepherds. If no object of the channel’s type exists along that ray, a
value of 0 is returned. To enable some inference of velocities and accelerations,
the 2nd and 3rd derivatives of position, readings from the last three time steps
are concatenated in a frame stack. Due to this setup, agents occlude other agents
of the same type, but do not occlude those of different types.

For the action ah in state s, the shepherd agent h receives a global reward
R (s, ah). Each shepherd agent individually tries to maximize their expected cu-
mulative reward, Er∼π[R (τ)], discounted by γ, where τ represents a sequence of
states and actions of the shepherd agents following the policy π. Our represen-
tation turns the shepherding problem into the problem of finding parameters θ
for policy πθ that maps observations to shepherd agent actions which maximize
reward. Policy πθ is shared between all shepherd agents.

4 Method

We follow the learning setup from our previous work [15] and adapt it to the
shepherding problem. We train multiple shepherd agents sharing one General-
ized Advantage Estimation (GAE) [23] stochastic policy, similar to independent
actor-critic with shared parameters [24, 23]. We share parameters because the
shepherding agents are homogeneous. The policy is trained with Proximal Policy
Optimization (PPO) [30]. Actor and critic are two separate, parallel networks re-
ceiving the same input. The input, as described in section 3, forms a 1, 536×1×3
size array (as shown in Fig. 2).

Fig. 2: Neural network architecture. The network takes in the sensor information
from each type of sensed object: sheep agents, shepherd agents and goal region,
and outputs a Gaussian distribution from which continuous actions are sam-
pled. The network consists of alternating convolutional and max-Pooling layers
followed by a single flattened dense layer. The mapping from payload protection
to shepherding permits the use of identical architectures [15].
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The output of the network is a set of continuous actions for each shepherd
agent. Actions are represented in the neural network by a Gaussian distribution,
N ([µvx;µvy] , [σvx;σvy]), where µvx and µvy are means and σvx and σvy are
standard deviations of the shepherd agents’ horizontal and vertical speeds. The
full network (Fig. 2) encodes a policy that maps input lidar information to
output robot actions. The mapping is implemented through convolution layers
(32 and 64 filters of size 1×10 and stride 1 with ReLU activation) and max pool
layers (size 1× 5 and stride 5). The output of the convolutional neural network
is flattened and output to a dense hidden layer (size 512 with ReLU activation),
which then returns the output action.

Episode initialization proceeds with the creation of a random environment.
First, the goal region is placed at the center of a 50m by 50m square workspace.
This position is purely for visualization , because the deep RL observations and
comparison method calculations are all spatially relative. During training, the
goal region has a radius uniformly sampled from [4, 8]m, while a fixed radius of
4m is used in evaluations. The flock is initialized in a random direction from the
goal region with a center to center distance sampled uniformly from [10, 20]m.
The shepherds are initialized around a point sampled uniformly in [5, 10]m from
the flock center in a random direction. Individual sheep and shepherd agents
are placed around their respective centers in random directions according to a
Gaussian distribution with mean 0m and standard deviation 1m. In training, the
flock size was 100, and between 1 and 6 shepherd agents were used to encourage
generalization for different shepherd agent counts. Training episodes were 1000
timesteps long. Finally, a dynamics model and parameters are set.

Networks are trained and evaluated on two distinct models of flock dynamics.
Table 1 describes the parameters of Strömbom and Reynolds flocking as detailed
in [14, 29]. Both dynamics implement sheep-sheep repulsion, attraction to cen-
ters of mass, and repulsion from shepherds. The biggest difference between the
two is what occurs when the shepherd is not near. In Strömbom dynamics, the
flock stops moving except for occasional random movements, while in Reynolds
dynamics there is local neighborhood velocity matching which causes the flock to
constantly move. This difference, in addition to differences in weighting compo-
nents of the force interactions, results in very different flock behaviors for which
our networks learn very different policies.

Network training is driven by a reward function that rewards when sheep are
in or close to the goal region. Specifically, we define two components of reward,
Occupancy Reward and Shaping Reward. We define Occupancy as the number of
sheep agents in the goal region normalized over the total flock size and episode
timesteps. To devise Occupancy Reward, we multiply Occupancy by factor λo,
here equal to 10. Using Occupancy Reward alone led to slow convergence, so we
added a Shaping Reward to penalize the distance of sheep agents from the goal
region. Shaping Reward is equal to one plus the distance from each sheep agent
outside the goal region to the boundary of the goal region, normalized by the
flock size and episode timesteps, then multiplied by λs, here equal to -0.1.Total
Reward for each shepherd agent is then Occupancy Reward + Shaping Reward.
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Strömbom Parameters Description Value

n nearest neighbors 90
rs radius of sheep detection of shepherds 65

3
m

ra agent to agent interaction distance 10m
ρa repulsion from other sheep agents 2
c attraction to sheep nearest neighbors 1.05
ρs repulsion from the shepherd agents 1
h inertia 0.5
e angular noise 0.3
p probability of moving while grazing 0.05
δa sheep agent movement speed 1

3
m/s

Reynolds Parameters Description Value

Neighborhood Radius radius of sheep view 7.5m
Separation Factor repulsion from other sheep agents 1.0

Velocity-Matching Factor sheep heading and speed matching 7.5
Cohesion Factor attraction to local center 1.0

Fear Factor repulsion from shepherds 10.0
Sheep Speed sheep agent movement speed 1

3
m/s

Table 1: Dynamics parameters for Strömbom (top) and Reynolds (bottom) flock
dynamics as applied to the sheep agents. Shepherd maximum speed is 1m/s.

(a) Strömbom flock dynamics [14] (b) Reynolds flock dynamics [29]

Fig. 3: Deep RL policy training demonstrating neural network performance as
experience is gained.

Training was performed for 100 million timesteps to learn policies that would
navigate a flock to the goal region for a given flock dynamics type. Fig. 3 gives
the mean cumulative reward plotted against the timesteps taken to train the
models for (a) ‘Strömbom’ [14] and (b) ‘Reynolds’ [29] flock dynamics. While
the flock dynamic model was changed for training, other environmental and
training setup parameters remained fixed.
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5 Experiments and Results

We assessed the performance of the trained deep RL models by evaluating them
against two state-of-the-art shepherding methods. First we evaluate changes in
performance as the numbers of shepherds and sheep increase. Next we measured
method robustness by changing environments with elements not present during
training. Finally, we evaluate the effect of retraining to accommodate different
flock dynamics.Evaluation episodes were 1000 timesteps long.

We selected two state-of-the-art comparison methods that that can scale to
multiple shepherds. The first comparison method, henceforth called ‘Strömbom’,
is presented by Strömbom et al. [14] with enhancements by El Fiqi et al. [31]. The
second comparison method, henceforth called ‘Pierson’, is presented by Pierson
and Schwager [13]. Strömbom works by alternating between collecting behavior
when the flock is separated and driving behavior when the flock is cohesive,
and is representative for multi-modal driving point based method. We imple-
mented enhancements from recent work [31] that allow multiple shepherds to
use Strömbom through arc formations centered on the driving point, as well as
avoid disrupting the flock by taking wide arc movements outside the effective
range of repulsion. Pierson puts shepherds in an arc around the flock to control
flock motion with unicycle-like dynamics, providing a non driving point based
strategy. To generalize Pierson to one shepherd, the shepherd attempts to go to
a place around the flock in the opposite direction of the desired heading of the
flock at a distance proportional to flock spread.

We evaluate performance of our deep RL method and the two comparison
methods on the shepherding problem using several metrics. The first is com-
pletion time, the number of timesteps it takes for the flock center of mass to
enter the goal region. We also look at path length, the distance traveled by either
the shepherd agent(s) or the flock center of mass. Shepherd path length is the
distance traveled by the agent(s) throughout the episode normalized by the sum
by the number of shepherds. Flock path length is calculated by summing the
displacement of the flock center of mass over the episode. Another metric we
use is flock spread, the standard deviation of the positions of the sheep agents
in relation of the flock center of mass. The last metric we use is flock fraction
reaching goal, which measures how much of the flock actually enters the goal
region during an episode.

Scaling with Sheep and Shepherds

We measure the effect of the flock size on the performance of our learned shep-
herding policy and compare it to the baseline heuristic models. We changed the
flock size from 10 to 100 in increments of 10 using Strombom flock dynamics,
while keeping shepherds fixed at 3 agents. The results are shown in Fig. 4. From
Fig. 4a, we see that Pierson achieves the fastest completion time, but Figs. 4b-
d show that it does so at the cost of the path lengths and flock spread. This
means that while Pierson reaches the goal in as little as two thirds of the time
it takes deep RL to reach the goal, it does so by moving about four times more.
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(a) (b)

(c) (d)

Fig. 4: Mean effects of increasing flock size on different metrics measured for each
method. (a) Time taken for the flock center of mass (COM) to reach the goal.
(b) Path length for the 3 shepherds. (c) Flock spread over all episodes. (d) Path
length for the flock center of mass

Strömbom provides the lowest flock spread of the three methods (Fig. 4c), re-
sulting in flocks with about 30% smaller spread than deep RL flocks. However,
deep RL has the shortest paths for the shepherds (Fig. 4b) and the flock path
length is comparable to that of Strömbom (Fig. 4d). It also shows similar flock
spread scaling as Strömbom, increasing at similar rates as the flock size increases
(Fig. 4c). Overall, each method stands out in a specific metric when scaling to
flock size, but the deep RL method provides the shortest shepherd paths while
being comparable to the state-of-the-art methods in their best metrics.

We also study the impact of increasing the number of shepherds on the per-
formance of our deep RL shepherding policy compared to the baseline heuristic
methods. For this evaluation, the number of shepherds was increased from 1 to 6
agents per episode while the flock size stayed fixed at 100 sheep with Strömbom
flock dynamics. The results in Figs. 5a and 5c show that the deep RL method
scales comparably to both heuristic methods in terms of completion times and
flock spread as the number of shepherds increases. From Fig. 5a, we can see that
all three methods benefit from increasing the shepherd counts, with diminishing
returns after 3-4 shepherds. Figs. 5b and 5d show that while the deep RL per-
formance worsens as the shepherd count increases, the method still outperforms
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Pierson. We can see from Fig. 5b that the deep RL shepherd paths become longer
with higher shepherd counts. That said, both Pierson and Strömbom take over
double the path length of deep RL. Increased shepherd count impacts on the
deep RL method are also seen with flock path length (Fig. 5d), where the deep
RL method approaches about 80% of the Pierson path lengths. In Fig. 5c, deep
RL flock spread is consistently less than Pierson but more than Strömbom. This
means deep RL has more cohesive flocks than Pierson, but still has about 50%
larger spread than Strömbom. While the deep RL path lengths increase with
shepherd count, the completion time reduces, and the flock spread is consistent.

Additionally, we measure the fraction of the flock that reached the goal while
varying both flock size and shepherd count. As results were highly consistent
across changing flock sizes and shepherd counts, they are not shown in any figure.
On average Pierson guides 100% of the flock to the goal, Strömbom guides 95.8%
of the flock to the goal, and deep RL guides 97.8% of the flock to the goal.

(a) (b)

(c) (d)

Fig. 5: Mean effects of increasing the number of shepherds on different metrics
measured for each method. (a) Time taken for the flock center of mass (COM)
to reach the goal. (b) Path length for the shepherds. (c) Flock spread over all
episodes. (d) Path length for the flock center of mass. Flock size is 100.
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(a) (b)

Fig. 6: The effects of adding noise to the positional observation of the entities in
the environment under Strömbom flock dynamics. (a) Time taken for the flock
center of mass (COM) to reach the goal. (b) Average shepherd path length.
Success rate is not shown, as all methods successfully completed the task.

Robustness to Observation and Changes in Dynamics

To showcase the deep RL method’s robustness to uncertainty and noise in the en-
vironment, we evaluate the performance of the learned model against the heuris-
tic baseline methods with the addition of noise applied to the entity positional
information. In order to simulate observation noise, positions of the goal, shep-
herds, and sheep are all given Gaussian noise of zero mean with a standard
deviation of 0 to 2m in each dimension. The new positions are used for the deep
RL observations and the strategy for the heuristic methods. The noise does not
affect the actual positions, metrics, or flock behavior. The evaluation episodes
are performed with 3 shepherd agents and a flock size of 100 with Strömbom
flock dynamics. The results are shown in Fig. 6. Results from Fig. 6a show that
the Strömbom method takes longer time to complete the task as the observation
noise increases, starting at standard deviation of 0.6m. On the other hand, deep
RL completion time doesn’t increase until 1.4m standard deviation. The Pierson
method maintains constant completion time. Fig. 6b shows that the shepherd
path length of the Pierson method is similar to previous experiments, consis-
tently taking the most effort to perform the task. It takes twice as much energy
as the deep RL and 5 times as much as Strömbom at high noise levels. Deep RL
achieves lower path lengths than Strömbom until the observation noise reaches
standard deviation 1m. Visual examination of episodes reveals that as the noise
increases, the Strömbom shepherds are more likely to pause and stutter as they
erroneously believe they are too close to the sheep, leading to lower path lengths.
Overall, while Strömbom achieves shorter path lengths than deep RL, it does so
at the expense of completion time. This indicates that deep RL is suitable for
noisy environments when path lengths are of concern. Note that metrics were
consistently high across the noise values tested and, as such, are not shown.

We also show the robustness of our method to variance in the dynamics of
the flock. In this study, ρa, the repulsion factor in Strömbom flock dynamics, is
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(a) (b)

Fig. 7: The effects of varying the flock cohesion parameter of Strömbom flock
dynamics. (a) Fraction of sheep agents that reached the goal region averaged
across all episodes. (b) Average shepherd path length.

varied to evaluate this sensitivity. The evaluation episodes are performed with
3 shepherd agents and a flock of size 100 Strömbom sheep. The value of ρa is
modified from 1, ranging from 0.5 (higher cohesion for the flock) to 4.0 (lower
cohesion of the flock). The results are shown in Fig. 7. Fig. 7a shows that the
Pierson method maintains high success as ρa increases (cohesion decreases).
The Strömbom method maintains high success until reaching ρa=3. Then, it
starts to fall until reaching 40% success at ρa=4. The deep RL method, on
the other hand, maintains high performance even as the value of ρa increases.
Additionally, Fig. 7b shows that the shepherd path lengths decrease as the value
of ρa increases. The decrease for Pierson and deep RL is small compared to the
Strömbom path length decrease. The Strömbom decrease can be attributed to
the stopping behavior seen when the shepherds get too close to the flock, since the
flock spreads more with higher ρa. The Strömbom method manages lower path
lengths than deep RL when ρa reaches 3, but that is also when it experiences
a significant loss in success. It should be noted that the lower shepherd path
lengths for Strömbom at ρa = 0.5 is due to the wide arc the shepherds take to
avoid affecting the flock being smaller, making it more likely that the shepherds
approach the flock and cause more pauses. The deep RL manages to maintain
success as well as Pierson while also having lower path lengths. As opposed to
the previous experiment, the deep RL method is overall more favorable than
Strömbom for changes in the parameters of the dynamics.

Change in Flock Dynamics

We examine performance of the deep RL method and comparison methods when
presented with a completely different set of dynamics, Reynolds (boids) flock
model, which demonstrates less cohesion than Strömbom flock dynamics. The
evaluation episodes have 3 shepherd agents with flock size of 10-100. The results
from Fig. 8 confirm that the deep RL method can be trained on a different set
of flock dynamics without adjusting the reward structure. Fig. 8a shows that
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(a) (b)

Fig. 8: The effects of increasing flock size under Reynolds (boids) dynamics. (a)
Fraction of sheep agents that reached the goal region averaged across all episodes.
(b) Average shepherd path length.

Pierson achieves very high success with the new dynamics, despite not being
tuned for it. Strömbom, on the other hand, consistently only has near 10%
success as the flock size changes. The deep RL method achieves similar high
performance when flock size is >30. Below a flock size of 30, deep RL has a
lower success rate, potentially due to being trained on larger flock size of 100
sheep and not yet converging at the provided learning threshold. From Fig. 8b we
can see that Strömbom maintains very low shepherd path lengths, less than 66%
of deep RL. However, this can be attributed to the low success of the method
with Reynolds dynamics which causes the flock to be much more dispersed. The
deep RL method manages to scale well with flock size in terms of shepherd path
lengths even when the flock has more complex dynamics. It is worth noting that
this experiment, as opposed to previous ones, involved retraining the deep RL
method so that the new flock dynamics could be observed. However, no other
changes were done to the learning setup.

We compare the learned policy on the Strombom flock to that on the Reynolds
flock using a value heatmap. The heatmap shows the estimated value of a shep-
herd agent in the presence of a given state containing the goal, two other shep-
herds, and 10 sheep. The results are shown in Fig. 9, where the value recorded
at each X, Y coordinate represents the value estimated by the shepherd if placed
in that position. We can see that both models prefer placing the third shepherd
behind the flock, guiding it to the goal. Fig. 9a has large areas of high value. We
attribute this to the Strombom flock clumping together tightly and being easier
to guide, allowing a lenient strategy. On the other hand, Fig. 9b has high-value
areas that are small. We attribute this to the Reynolds flock being more spread
out and harder to guide, requiring a more stringent strategy. The heatmaps show
that the models do not simply approximate similar strategies for both dynamics,
but develop unique policies appropriate for each flock.



14 Yazied Hasan et al.

(a) (b)

Fig. 9: The value heatmap, for (a) agents trained on the Strombom flock and (b)
agents trained on the Reynolds flock, depicting the estimated value of a third
shepherd agent at the coordinate position. Higher values in blue indicate more
preferable positions, and lower values in red indicate less preferable positions.
The goal, shepherds, and sheep are represented by grey, black, and white circles,
respectively.

6 Conclusion

In this work, we adapted a learning solution to the payload protection Prob-
lem to create a new deep RL solution for the shepherding problem. The model
learned a policy for shepherds to guide a flock of sheep towards a goal area. The
learned solution scales with flock size and shepherd count, and can be trained
on different flock dynamics. The experimental results show that while heuristic
methods provide solutions to many problem setups, they often do so at the ex-
pense of shepherd motion. Additionally, the deep RL method provides automatic
coordination of shepherds, motion based on observations of sheep positions, and
robustness/generality to several changes in the problem setup including scaling
numbers of agents, positional noise, and changes in dynamics.

It is important to note the assumptions made in this work along with the
subsequent limitations. First, this work focuses on the guiding and driving of
the flock towards the goal area, rather than the collection of stragglers. As an
assumption, the flock starts the episode in one cluster instead of spread about
the environment. Another assumption we made is that, while the method does
not assume perfect knowledge of flock agent positions and center of mass like
other methods, different observation channel types do not occlude each other.
That is, one sheep can occlude another sheep in the observation, but sheep do
not occlude the goal from the shepherd’s vision. This could be addressed with
different inputs to the learning at a potential loss in solution quality due to
the reduced positioning knowledge. Additionally, this work does not address the
lack of completeness in shepherding solutions. Learning provides an approximate
solution to this problem, so there is no guarantee the sheep agents will reach the
goal region. However, this is the case for any learned solution.
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