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Abstract. We focus on decentralized navigation among multiple non-
communicating agents at uncontrolled street intersections. Avoiding col-
lisions under such settings demands nuanced implicit coordination. This
is challenging to accomplish; the high dimensionality of the space of pos-
sible behavior and the lack of explicit communication among agents com-
plicate prediction and planning. However, the structure of these domains
often collapses the space of possible collective behavior into a finite set
of modes. Our key insight is that enabling agents to reason about modes
may enable them to coordinate implicitly via intent signals encoded in
their actions. In this paper, we represent modes as low-dimensional mul-
tiagent motion primitives in a compact and interpretable fashion using
the formalism of topological braids. Based on this representation, we de-
rive a probabilistic model that maps past behavior of multiple agents
to a future mode. Using this model, we design a decentralized control
algorithm that treats navigation as uncertainty minimization over the
space of modes. This algorithm enables agents to collectively reject un-
safe intersection crossing strategies in a distributed fashion. We demon-
strate our approach in a simulated four-way uncontrolled intersection.
Our model is shown to reduce the frequency of collisions by over 65%
against baselines explicitly reasoning in the space of trajectories, while
maintaining comparable time efficiency in challenging scenarios.
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1 Introduction

Street environments such as intersections often feature significant spatial struc-
ture through crosswalks, sidewalks or dedicated lanes. However, due to driver-
to-driver variability, local customs and inconsistencies in the placement of signs
and traffic lights, they do not always feature concrete mechanisms for organizing
traffic flows temporally. For instance, street intersections lacking traffic lights
and signage is a situation most drivers have encountered, and is, in fact, preva-
lent in developing countries [24]. While standard means of signaling such as turn
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signals, horns, or even gaze, gestures and verbal communication could be useful
under such circumstances, relying solely on these cues poses significant risk.

Fig. 1: We study a minimalis-
tic setup of decentralized navi-
gation at uncontrolled intersec-
tions. By judiciously adjusting
their speeds, agents may reach
consensus over safe intersection
traversals. We enable agents to
visualize possible types of traver-
sal using the representation of
topological braids.

The effects of wrongly responding at in-
tersections vary from inefficient intersection
crossings (traffic backups) to catastrophic
collisions. For reference, in the United States,
during the year 2018, 43.7% of motor vehicle
crashes occurred at intersections (2,943,717
out of 6,734,416 incidents). Out of these,
8,245 incidents involved fatalities, represent-
ing the 24.5% of all fatal crashes for the same
year [23]. While the circumstances of each ac-
cident may differ, we view the high uncer-
tainty and lack of timely coordination as ma-
jor contributing factors to this sad reality.

Motivated by these observations, in
this paper we consider the model setup
of an uncontrolled, four-way street in-
tersection [22] where multiple rational1,
non-communicating but perfectly-observing
agents navigate in close proximity. The lack
of explicit communication among agents re-
sults in high uncertainty which complicates
decision making. However, the spatial struc-
ture of the environment and the assumed rationality of agents tend to collapse
multiagent behavior to a discrete set of modes. Our key insight is that instead of
attempting to predict agents’ future behavior in the form of Cartesian trajecto-
ries –which comes with high requirements in sample or runtime complexity—it
might often be sufficient to imbue agents with a model of mode prediction. For
a example, in a simple scenario involving two vehicles, an agent could reason
about the likelihood passing before or after the other.

In prior work [17], we formalized modes as topological braids [1] and showed
that this representation can be used to analyze traffic in complex, real-world
scenes [16]. Building upon that work, in this paper, we develop a probabilistic
inference mechanism that predicts future multiagent behavior, represented as a
braid, given a history of agents’ Cartesian trajectories. We integrate this mech-
anism into an optimization-based reactive control algorithm that selects actions
balancing uncertainty reduction over a mode, and safety (see Fig. 5). Through
a simulation study, we compare our algorithm against a set of baselines that
reason directly over the space of trajectories (Sec. 6). We demonstrate that our
framework enables multiple non-communicating agents to coordinate implicitly
and follow significantly safer paths (at least 65% fewer collisions) across a series
of challenging intersection-crossing scenarios. Our findings suggest that incorpo-
rating topological features in the decision making process of non-communicating

1 Agents that intend to follow time-efficient and collision-free paths.
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agents enables effective coordination even in the absence of explicit communica-
tion or sophisticated trajectory reconstruction.

2 Related Work

In recent years, the robotics community has paid considerable attention to prob-
lems in multiagent driving domains.

The complexity of real-world traffic has motivated foundational work on ab-
stractions of multiagent behavior. Pierson et al. [25] propose a congestion cost
function that enables agents to plan lane changes within desired risk levels. Some
works have contributed discrete, semantic representations of traffic. Wang et al.
[34] classify discrete driving styles using multi-dimensional time series analysis
and Gadepally et al. [7] use Hidden Markov Models to estimate long-term driver
behaviors. Other approaches extract symbolic representations of traffic behav-
ior from data [30] or leveraging properties like topological invariance [15, 26].
Finally, a body of work focuses on developing tools for testing and validation
tailored to autonomous driving applications. Tian et al. [33] propose a verifi-
cation testbed for navigation algorithms using tools from game theory whereas
Liebenwein et al. [14] apply compositional and contract-based principles to driv-
ing controller verification. In prior work, we proposed a framework for charac-
terizing the complexity of traffic datasets using topological braids [16].

In parallel, there has been rich interest in algorithmic approaches for mul-
tiagent driving domains. Many works study mechanisms of coordination. For
example, Sadigh et al. [27] plan intent-expressive maneuvers that reinforce safe
and efficient coordination in mixed traffic scenarios whereas Lazar et al. [13]
plan optimal lane changes that reinforce prosocial behaviors such as platooning
to increase capacity in congested highways. Some works focus on centrally man-
aged intersections. Buckman et al. [5] plan vehicle rearrangements using a social
psychology metric to reduce system delays in centrally managed intersections
whereas Miculescu and Karaman [20] develop a centralized control framework
with safety and efficiency guarantees for continuous car flows at an unsignalized
intersection. Many works apply tools from belief space planning to the problem
of safe lane merging [2, 4, 8, 9, 29]. Finally, some approaches focus on dealing
with occlusions and faulty perception using probabilistic modeling [19] or deep
reinforcement learning [11].

Building upon recent work on the use of topological braids [3, 16, 17] as
a symbolic abstraction of multiagent behavior in driving domains, we derive a
probabilistic framework for decision making in complex multiagent scenes with
no explicit communication among agents. Unlike prior work [17] which consid-
ered simplified, obstacle-free domains and holonomic agents [18], in this paper
we consider a continuous workspace with a realistic street intersection structure
and nonholonomically-constrained agents. Using first principles of probability
theory, we develop a Bayesian framework that enables an agent to reason about
how its own local decisions impact global interactions with others in tight driving
environments like four-way intersections. We then treat decentralized multiagent
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navigation as uncertainty reduction over the space of collective navigation strate-
gies, demonstrating safer intersection crossing behaviors compared to baselines
performing inference in the trajectory space.

3 Problem Statement

Consider the uncontrolled street intersection of Fig. 1 where n > 1 non com-
municating agents with car-like kinematics are navigating. Denote by qi =
(xi, yi, θi) ∈ Q ⊆ SE(2) the state of agent i ∈ N = {1, . . . , n} with respect
to (wrt) a fixed reference frame, defined by a basis (x̂, ŷ, t̂). Each agent i starts
from an initial state si ∈ Q, lying on a side of the intersection, and moves towards
a final –unknown to others– state di ∈ Q lying on a different side. They do so
by tracking a path τi : I → Q, for which it holds that τi(0) = si and τi(1) = di,
where I = [0, 1] is a path parametrization. Observing the complete system state
Q = (q1, . . . , qn) ∈ Qn, agent i tracks τi by executing a policy πi : Q → U ,
generating actions ui ∈ U (speed and steering angle), where U ⊆ R × S is a
space of controls. Agent i is not aware of the intended path τj , the destination
dj or the exact policy πj of any other agent j 6= i ∈ N but is able to perfectly
observe their state at every timestep.

In this paper, we design a policy πi with the goal of enabling agents to flu-
ently coordinate collision-free intersection crossings while following time-efficient
trajectories under uncertainty in a distributed fashion.

4 Preliminaries

Our approach is based on coupling individual agents’ behaviors into a joint
representation. Collectively, agents track a system path T = (τ1, . . . , τn) by
executing a system trajectory Ξ = (ξ1, . . . , ξn), where ξi : [0, t∞] → Q is the
trajectory of agent i, and t∞ is a terminal time corresponding to when the
last agent reaches its destination. The trajectory Ξ can be abstracted into a
topological braid [3] using our method from prior work [16]. We quickly recap
braids and the process for transitioning from a Cartesian trajectory into a braid.

···

σ1

, ···

σ2

, . . . , ···

σn−1

(a) Generators of Bn.

···

σ1

· ···

σ−1
2

=
···

σ1 · σ−1
2

(b) Example of composition.
Fig. 2: Presentation of the braid group, Bn.
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4.1 Topological Braids

A braid is a tuple bf = (f1, . . . , fn) of functions fi : I → R2×I, i ∈ N , defined on
a domain I = [0, 1] and embedded in a Cartesian space (x̂, ŷ, t̂). These functions,
called strands, are monotonically increasing along the t̂ direction, satisfying the
properties: (a) fi(0) = (i, 0, 0), and fi(1) = (pf (i), 0, 1), where pf : N → N is a
permutation in the symmetric group Nn; (b) fi(t) 6= fj(t) ∀ t ∈ I, j 6= i ∈ N .
Two braids, bf = (f1, . . . , fn), bg = (g1, . . . , gn), can be composed through a
composition operation (Fig. 2b): their composition, bh = bf · bg, is also a braid
bh = (h1, . . . , hn), comprising a set of n curves, defined as:

hi(t) =


fi(2t), t ∈

[
0,

1

2

]
gj(2t− 1), t ∈

[
1

2
, 1

] , (1)

where j = pf (i). The set of all braids on n strands, along with the composi-
tion operation form a group, Bn, called the Braid group on n strands. Following
Artin’s presentation [1], the braid group Bn can be generated from n− 1 prim-
itive braids σ1, ..., σn−1 (see Fig. 2a), called generators, and their inverses, via
composition. Any braid can be written as a word, i.e., a product of generators
and their inverses (Fig. 2b), satisfying the relations:

σiσj = σjσi, |j − i| > 1,

σiσi+1σi = σi+1σiσi+1, ∀ i.
(2)

4.2 Transforming Traffic Trajectories into Braids

(a) Two agents cross
an intersection.

(b) Braid describing
agents’ behavior in a.

(c) Four agents tra-
verse an intersection.

(d) Braid describing
the behavior in c.

Fig. 3: Vehicle trajectories (left) are sum-
marized as topological braids (right).

In prior work [16], we showed that
any collection of trajectories in a
traffic scene can be represented as
a topological braid. We also de-
scribed a method for converting
traffic trajectories into braids, in-
spired by the technique of Thif-
feault [31]. In brief, the technique
involved: a) projecting trajectories
onto a selected spacetime plane;
b) labeling any trajectory crossings
that emerge in the projection as
braid generators and their inverses
by identifying under or over cross-
ings (Fig. 3d); c) forming a braid
word by arranging them in tempo-
ral order.

This technique enables the sum-
marization of a traffic episode as an
object with symbolic and geometric
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descriptions. For example, in Fig. 3d, the braid σ3σ1σ−12 σ−13 σ−11 ∈ B4 is a sum-
mary of how agents coordinated to avoid each other throughout the episode.
This braid represents a mode of behavior involving the four agents. In general,
in a scene with n agents, the braid group Bn represents the set of all modes of
multiagent behavior that are likely. As shown [16], the braid representation com-
presses multiagent behavior into a low-dimensional compact object that retains
salient properties of interaction.

5 Decentralized Navigation as Braid Prediction

We describe a probabilistic model that links past agents’ trajectories to a braid
representing the spatiotemporal entanglement of their future trajectories at an
intersection domain. Fig. 4 illustrates the setup of the proposed model in a four-
agent scenario. Based on this mechanism, we build an optimization-based control
scheme for decentralized navigation at uncontrolled intersections.

5.1 Reasoning about Braids of Multiagent Interaction

Fig. 4: Topological inference. At time t,
given state history Ξ, the ego agent (red),
following path τ1, predicts the topology β
of the unfolding multiagent interaction.

At time t ∈ [0, t∞], agent i, having
access to the complete system state
history so far, Ξ, maintains a be-
lief beli = P (βi|Ξ) over the braid
βi ∈ Bn that describes the topol-
ogy of the emerging (future) system
trajectory Ξ ′ = Ξt→∞ from the
perspective3 of agent i. The braid
βi depends on agents’ intended sys-
tem path T . To capture this depen-
dency, we marginalize over Ti, the
subset of the set of system paths,
T , for which agent i (the ego agent)
follows its intended path:

beli =P (βi|Ξ)

=
∑
T∈Ti

P (βi|Ξ, T )P (T |Ξ).

(3)
For a given system path T , different braids could possibly emerge, depend-

ing on the path tracking behavior of agents. To capture this dependency, we
marginalize the probability P (βi|Ξ, T ) over the control profile U ∈ Un that
could be taken by agents at the current time step:

P (βi|Ξ, T ) =
∑
U∈Un

P (βi|Ξ,U, T )P (U |Ξ, T ). (4)

3 Each agent uses a distinct projection plane to define their own braid set.
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Substituting to eq. (3), we get:

beli =
∑
Ti

{∑
Un

P (βi|Ξ,U, T )P (U |Ξ, T )

}
P (T |Ξ). (5)

Eq. (5) combines a local action selection model P (U |Ξ, T ) with a model of intent
inference P (T |Ξ) and a global behavior prediction model P (βi|Ξ,U, T ).

The intention of agent j 6= i over a path τj is conditionally independent of the
intention of any other agent, given the past system trajectory Ξ. The probability
over the path intention of agent j does not depend on the trajectories of others.
Thus, we simplify the computation of the system path prediction as:

P (T |Ξ) =
∏
j∈N\i

P (τj |ξj), (6)

where the product only considers the probabilities over the paths of others, since
agent i is certain about their own path.

Similarly, since agents select a control input independently, without having
access to the policies of others, we decompose the computation of the control
profile prediction as:

P (U |Ξ, T ) =
n∏
i=1

P (ui|Ξ, T ), (7)

where the distribution P (ui|Ξ, T ) represents the control input that agent i ex-
ecutes to make progress along its path τi, incorporating considerations such as
preferred navigation velocity and a local tracking controller class.

The model of inference of eq. (5) focuses on topology prediction, without
considerations of collision avoidance. To filter out unsafe braids, we redefine eq.
(5) by incorporating a model of collision prediction. Define by c a boolean random
variable representing the event that Ξ ′, the emerging future trajectory contains
collisions (true for a collision, false for no-collision). Denote by β̃ = (βi,¬c)
the joint event that Ξ ′ is both topologically equivalent, i.e., ambient-isotopic [21]
to a braid βi ∈ Bn, and not in collision, i.e., c is false. Then the belief, b̃eli, of
agent i that β̃i is true can be computed as:

b̃eli = P (β̃i|Ξ) =
∑
T

{∑
U

P (β̃i|Ξ,U, T )P (U |Ξ, T )

}
P (T |Ξ). (8)

The occurrence of a collision is conditionally independent of the emerging braid
–the braid only describes the topological pattern of the trajectories, ignoring
any geometric intersections among the volumes of the vehicles. Thus, we may
compute their joint distribution as:

P (β̃i|Ξ,U, T ) =P (β̃i,¬c|Ξ,U, T )
=P (¬c|Ξ,U, T )P (βi|Ξ,U, T )
=
(
1− P (c|Ξ,U, T )

)
P (βi|Ξ,U, T ).

(9)

5.2 Decision Making

An outcome β̃i represents a class of trajectories Ξβi
that are topologically equiv-

alent to the braid βi and not in collision. During execution, the distribution
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P (β̃i|Ξ,U, T ) is reshaped as a result of agents’ decisions. Our approach con-
tributes towards a minimum-entropy shape of P (β̃i|Ξ,U, T ), which corresponds
to a state of consensus over a braid β̃i from the perspective of agent i. We do so
through the following receding-horizon control scheme:

u∗i = arg min
ui∈U

H(β̃i), (10)

where
H(β̃i) = −

∑
Bn

P (β̃i|Ξ) logP (β̃i|Ξ), (11)

is the information entropy of P (β̃i|Ξ), representing agent i’s uncertainty over a
solution β̃i where P (β̃i|Ξ) is recovered using eq. (8). This optimization scheme
contributes uncertainty-reducing actions over the emerging outcome β̃i. Note
that the use of the information entropy as a cost reflects the insight that multiple
elements of Bn could be valid solutions to the collision avoidance problem at a
given instance. The ego agent behavior could still contribute to collision-free
navigation even when there is not a unique winner within Bn, a strategy that
has been successfully applied to domains like shared control [12].

Fig. 5: Decision-making scheme. At every cycle, the ego agent forward simulates
a set of distinct futures, classifies them into topological outcomes, and selects
the action that minimizes the uncertainty over such outcomes.

6 Application

We deploy our decision-making mechanism in a simulated study in an uncon-
trolled intersection with multiple (n) vehicles.

6.1 Setup

Our setup is the 4-way symmetric intersection of Fig. 1. Each lane at the inter-
section is 50m long and 3.6m wide, whereas each car is represented as a rectangle
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with a length of 4.7m and a width of 1.7m. We assume that any side a is con-
nected to any other side b 6= a with a unique, publicly known legal path τab, lying
along the middle of the lane. We assume that any agent i ∈ N that attempts to
reach side b from side a will attempt to track this path, τab.

Each agent follows a path out of three options (left, right, or straight). Thus,
agent i needs to consider |Ti| = 3n−1 possible system paths, extracted upon
iterating over all possible combinations for other agents’ paths. We consider a
trial to be split in two phases: (a) the negotiation phase, which corresponds to
the initial straight-path part of the intersection (denoted as Qnegi for agent i),
within which the agent attempts to reach a consensus with others wrt a joint
strategy of collision avoidance; (b) the execution phase, which corresponds to the
rest of the path (denoted as Qexeci for agent i), within which the agent tracks the
remainder of its path, by maintaining a constant speed. This decision emphasizes
the importance of proactive negotiation during the first portion, and provides a
natural metric of quality: the count of collisions during the execution part.

6.2 Models

We describe models for the components of eq. (11).
Intention prediction. We assume that agent i has no knowledge of the path

τj of any other agent j 6= i ∈ N while j is in the negotiation stage. However, we
assume that τj becomes immediately obvious to agent i when agent j enters the
intersection:

P (τj |ξj(t)) = P (τj |qj) =

{
1/m for qj ∈ Qnegj

1 for qj ∈ Qexecj ,
(12)

where qj = ξj(t) is agent j’s current state, and m = 3 is the number of paths
that agent j selects from.

Behavior prediction. Here, P (uj |Ξ, T ) expresses the belief of agent i that
agent j ∈ N will execute a control input uj in the next timestep. We assume that
all agents employ the same PID controller converting a desired speed νj , drawn
from a set Vj into a control input uj towards the next waypoint along their
path, τj . We also assume that Vj contains two speeds: νlowi and νhighj . Agents
generally prefer the high speed, which we encode in a distribution P (νj |ξj , τj) =
P (νj). For each agent, P (νj = νhighj ) is sampled at random from the range
[0.6, 0.8] and remains fixed throughout the execution. Note that a speed νj is
deterministically mapped to a control input uj through the low-level controller,
thus P (uj |ξj , τj) = P (νj). Each agent i has a noisy estimate about the speed
preferences of others: it assumes that others have the same exact preferences.

Topology prediction. To extract the probability of a topological outcome,
agent i forward simulates each path set T ∈ Ti a total of 2n times, each cor-
responding to a unique assignment of speeds (drawn from V) to agents that
are held constant throughout execution. For each path set / speed combination,
agent i extracts a future system trajectory Ξ ′ and extracts a corresponding braid
word βi by projecting Ξ ′ onto a selected plane, as described in Sec. 4.2. For con-
venience and generality, each agent uses a distinct projection plane defined by a
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local x axis (see Fig. 4), and the time axis. This process results in a set B ⊂ Bn
containing the set of all braids that could be realizable in the remainder of the
execution. We model the probability that a future trajectory is equivalent to a
braid β∗ ∈ B as follows:

P (βi = β∗|Ξ,U, T ) = 1

z

∑
1(Ξ ′, β∗), (13)

where the indicator function 1(Ξ, β∗) = 1 if a trajectory Ξ ′ is topologically
equivalent to the braid β∗ and 0 otherwise, and z is a normalizer across B. We
perform the above computations using the Braidlab [32] package.

Collision prediction. During the forward simulations detailed above, for
each trajectory Ξ ′ we compute a minimum inter-agent distance dmin. We model
the probability of a collision P (c|Ξ,U, T ) as follows:

P (c|Ξ,U, T ) = 1

1 + ea(dmin−δ)
, (14)

where a (set to 10) controls the rate of change of the function and δ (set to 15m)
denotes a threshold distance beyond which collision is imminent. According to
this model, the smaller dmin is, it is exponentially more likely to have a collision.

6.3 Experiment Design

We define three scenarios, involving 2, 3, and 4 agents respectively, designed to
give rise to challenging interactions among agents. For each scenario, we gener-
ate a set of randomized experiments by varying agents’ speed preferences. We
execute each experiment under 5 conditions, each corresponding to a distinct
variation of the proposed algorithm, executed by all agents.

Scenarios

S2: Two agents, starting from the bottom / right sides of the intersection, are
moving straight towards the top and left sides respectively. They both draw
speeds from Us2 containing 12 evenly spaced speeds within [5, 10] (m/s). We
generate 144 experiments corresponding to the Cartesian product U2

s1.
S3: Three agents, starting from the bottom, right and top are moving straight
towards the top, left and bottom sides respectively. They draw speeds from
Us3, containing 5 evenly spaced speeds within the range [5, 10] (m/s). We
generate 125 experiments corresponding to U3

s2.
S4: Four agents, starting from the bottom, right, top, and left, are moving
straight towards the top, left, bottom, and right sides respectively. They
draw speeds from Us4, containing 3 evenly spaced speeds within the range
[5, 10] (m/s). We generate 81 experiments corresponding to U4

s3.

Conditions

C1: Agents track their desired paths with their desired speeds, without ac-
counting for avoiding collisions with others. This condition serves as a refer-
ence of the intensity of interactions for each scenario.
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C2: Our complete proposed algorithm from eq. 10.
C3: A modification of our proposed algorithm that assumes knowledge of
the paths that other agents are following, i.e, they replace eq. (8) with

b̃eli =
∑
U

P (β̃i|Ξ,U, T )P (U |Ξ, T ). (15)

C4: A variation of C2 that does not use braids for clustering trajectory sets.
Specifically, agents reason about the emerging collision-free system trajectory
Ξ̃i (instead of β̃i), replacing eq. (8) with

b̃eli = P (Ξ̃i|Ξ,U, T )P (U |Ξ, T )P (T |Ξ). (16)
C5: A modification of C4 that assumes knowledge of the paths that others
are following, i.e, C5 replaces eq. (16) with

b̃eli = P (Ξ̃i|Ξ,U, T )P (U |Ξ, T ). (17)
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(f) S4.
Fig. 6: Performance under homogeneous settings across conditions and scenar-
ios. S2, S3, and S4 denote scenarios with 2, 3, and 4 agents respectively. Bars
represent means; errorbars indicate standard deviations and 25/75 percentiles
for the collision frequency (top) and time charts (bottom) respectively.

6.4 Results

Fig. 6 depicts performance under the 5 conditions across the 3 scenarios consid-
ered. As a reference, C1 scores the highest collision frequency and lowest time
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to destination, serving as a characterization of the hardness of the selected sce-
narios. Overall, we observe that as the number of agents increases, the collision
frequency increases as well. We also see that the topology-based approaches (C2,
C3) generally outperform the trajectory-based ones (C4, C5) in terms of collision
frequency. As expected, knowledge of agents’ intended paths generally reduces
collisions.

Our approach (C2) achieves consistently low collision frequency across all sce-
narios. Compared to C4, C2 reduces collision frequency by: 95% in S2 (Fig. 6a);
65% in S3 (Fig. 6b); 66% in S4 (Fig. 6a). The price that C2, and C3 pay is
the increased maximum time to destination. We note however that for the more
complex scenarios (S3, S4), the time difference is not statistically significant
(Fig. 6e, Fig. 6f).
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(b) C4.
Fig. 7: Distance covered per agent over the first 3s of execution within a 4-agent
experiment under C2 and C4. The black line indicates arrival at the intersection.

We attribute the performance gains of topology-based baselines to the in-
corporation of multiagent interaction modeling into agents’ decision making.
Trajectory-based approaches ignore the existence of the domain’s structure which
could be acquired through our proposed topological partitioning using braids.
The braid group represents the set of distinct modes that could describe the
collective motion of navigating agents. Explicitly reasoning about these modes
enables a rational agent to anticipate the effect of its actions on system behavior.
Our policy outputs local actions of global outlook that contribute towards re-
ducing uncertainty over the emerging mode. Collectively, this results in implicit
coordination, reflected in the reduced collision frequency of C2, C3. To illustrate
this point, Fig. 7 depicts a comparative qualitative example of the behaviors
generated by our policy. For the same experiment from S4, we observe that C2
agents (Fig. 7a) quickly converge to a clear order of intersection crossings as a
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result of their proactive decision making. On the other hand, C4 agents (Fig. 7b),
lacking the ability of modeling the complex multiagent dynamics, appear unable
to coordinate their crossings and end up colliding.

7 Discussion

Our findings illustrate that the principled domain knowledge induced by the
braid abstraction of multiagent interaction may enable superior performance
than baselines reasoning directly in the vast space of Cartesian trajectories. Our
setup is deliberately simplified to facilitate the extraction of foundational in-
sights. Guided by the presented insights, we see the foundations of our approach
as relevant to the areas of behavior prediction and decision making for multiagent
navigation. For example, we anticipate that reasoning about the spatiotemporal
topology of multiagent behavior could likely improve the performance of trajec-
tory prediction models [28], belief-space approaches [4], reinforcement learning
techniques [10] in traffic scenarios.

One interesting observation from our experiments is that our agents (C2)
generally manage to coordinate collision-free intersection crossings even though
they use different braid representations: each agent represents a space of modes
by considering a different braid projection plane (their local x̂-t̂ plane) which
is unknown to others. This indicates that agents converge to the underlying
multiagent behavior topology through our inference mechanism, even though
they tend to use different language to represent the same topological events.

Another observation worth noting is that agents do not know the true speed
preferences of others; they only maintain a noisy estimate. Despite that fact, they
are able to avoid collisions to a significant extent by following the collaborative
probabilistic approach of rejecting unsafe intersection traversals of eq. (10).

On a similar note, it is important to highlight that while each agent is using a
distinct projection plane to represent braids internally, the collaborative filtering
process induced through the iterative entropy reduction results in convergence to
safer intersection crossings. In other words, even though agents might represent
same coordination strategies with different braid words, they are still able to
follow collision-free intersection crossings more often.

7.1 Limitations

The braid representation significantly compresses the space of outcomes from
the continuum of Cartesian trajectories into a discrete set of topological modes.
This compression holds the potential for computation speedups for inference
and decision making. However, in this paper we did not explicitly demonstrate
such computation gains, as our prototype implementation of eq. (10) involved
forward simulations iterating over paths and controls. We envision that we could
replace costly forward simulations with fast-inference models of the underlying
probability distributions acquired through data-driven techniques [18, 26].
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While deliberately minimalistic, our setup is an oversimplified abstraction
of real-world uncontrolled intersections. Agents’ behavioral models could be re-
placed by more realistic ones, drawn from simulators [6] or real-world datasets.
Additional considerations towards realism would involve asymmetrical intersec-
tions or different types of scenarios like roundabouts or merging highway lanes
which, as we showed in prior work [16], can also be abstracted into braids. Fi-
nally, the implementations of the probabilistic models used by the framework
(intention, behavior, topology, and collision prediction) could be replaced by
higher-fidelity approximations through the use of data-driven techniques.
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