
Safe Output Feedback Motion Planning from Images via
Learned Perception Modules and Contraction Theory

Glen Chou, Necmiye Ozay, and Dmitry Berenson

Dept. of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48105, USA
{gchou, necmiye, dmitryb}@umich.edu

Abstract. We present a motion planning algorithm for a class of uncertain control-
affine nonlinear systems which guarantees runtime safety and goal reachability
when using high-dimensional sensor measurements (e.g., RGB-D images) and a
learned perception module in the feedback control loop. First, given a dataset of
states and observations, we train a perception system that seeks to invert a subset
of the state from an observation, and estimate an upper bound on the perception
error which is valid with high probability in a trusted domain near the data. Next,
we use contraction theory to design a stabilizing state feedback controller and a
convergent dynamic state observer which uses the learned perception system to
update its state estimate. We derive a bound on the trajectory tracking error when
this controller is subjected to errors in the dynamics and incorrect state estimates.
Finally, we integrate this bound into a sampling-based motion planner, guiding it
to return trajectories that can be safely tracked at runtime using sensor data. We
demonstrate our approach in simulation on a 4D car, a 6D planar quadrotor, and a
17D manipulation task with RGB(-D) sensor measurements, demonstrating that
our method safely and reliably steers the system to the goal, while baselines that
fail to consider the trusted domain or state estimation errors can be unsafe.
Keywords: Motion planning · machine learning · perception-based control.

1 Introduction

Measurement:
RGB image

(C)Measurement:
RGB-D image (A)

Measurement:
RGB image

(B)

py

px

pz

px

Fig. 1. For a 4D car, a 6D quadrotor, and a 14D arm, we compute plans that can be safely stabi-
lized to reach goals at runtime using rich sensor observations in the form of RGB(-D) images.

Safely and reliably deploying an autonomous robot requires a systematic analysis of
the uncertainties that it may face across its perception, planning, and feedback control
modules. State-of-the-art methods largely analyze each module separately; e.g., by first
certifying perception [29], finding a safe plan under a nominal dynamics model [15],
and then using a stable tracking controller [22]. However, this ignores how the errors in
each module can propagate. Inaccuracies in the dynamics and perception can destabilize
the downstream feedback controller and lead to failure, revealing a need to unify per-
ception, planning, and control to guarantee safety for the end-to-end autonomy pipeline.

To address this gap, we consider one such unified approach: the Output Feedback
Motion Planning problem (OFMP) [21], which jointly plans nominal trajectories and
designs feedback controllers which safely stabilize the system to some goal when using
imperfect state information (i.e., output feedback). A concrete way to solve the OFMP

2 G. Chou et al.

is to bound the set of states that the system may reach while tracking a plan using output
feedback, that is, a closed-loop output feedback trajectory tracking tube, and ensure it
is collision-free. Practical robots present challenges in solving the OFMP:

1. The tracking tubes should be efficiently computable for arbitrary trajectories so that
they can be used in the planning loop to restrict the set of states that can be safely
visited. However, solving this reachability problem is computationally demanding.

2. Processing rich sensor data (e.g., images, depth maps, etc.) at runtime is often done
via deep learning-based perception modules, which are powerful but error-prone.
Bounding this error and bounding its effect on trajectory tracking error is difficult.
To address the first challenge, we use contraction theory, which is of specific inter-

est for the OFMP as it enables the 1) design of stabilizing feedback controllers [18] and
convergent state estimators [7] and 2) fast computation of tracking/estimation tubes,
given a bound on the disturbances that the controller and observer are subjected to [17].
Estimating this bound is central to our solution of the second challenge, where we use
data to 1) estimate a bound on the error of a learned perception module which is valid
with high probability and 2) bound the level to which incorrect state estimates can
destabilize the controller. Combining these solutions provides accurate tubes that can
be used in planning. In summary, we develop a contraction-based output feedback mo-
tion planning algorithm for control-affine systems stabilized from image observations,
which retains guarantees on safety and goal reachability. Our specific contributions are:

– A learning-based framework for integrating high-dimensional observations into
contraction-based control and estimation that can generalize across environments

– A trajectory tracking error bound for contraction-based feedback controllers in out-
put feedback, subjected to a disturbance that accurately reflects the perception error

– A sampling-based planner which solves the OFMP, returning plans that can be
safely tracked and that reliably reach the goal at runtime using image observations

– Validation in simulation on a 4D nonholonomic car, a 6D planar quadrotor, and a
17D manipulation task, guaranteeing safety whereas baseline approaches fail

2 Related Work

First, our work is related to and draws from contraction-based control and estimation.
Contraction-based robust control [5, 22, 25] can ensure safety for uncertain systems us-
ing perfect state feedback, but the guarantees are lost if using imperfect state estimates.
Other work has studied contraction-based convergence guarantees for state estimation
without control input, e.g., [3, 7, 26]; however, solving the OFMP requires jointly an-
alyzing the controller and observer. Most closely related is [17], which studies output
feedback control via contracting controllers and observers; however, it considers simple
measurement models and does not derive the tracking tubes needed for the OFMP.

Our work also relates to control from rich observations. Differentiable filtering [12]
learns state estimators from images in an end-to-end fashion, which while empirically
successful, do not provide guarantees. Other work focuses on safety: [9] safely controls
linear systems using learned observation maps; other methods use Control Barrier/Lya-
punov Functions (CBF/CLFs) to guarantee safety for nonlinear systems by robustifying
the CBF condition to measurement errors [6, 10]; however, these methods use simple
sensor models or require that the entire state is invertible from one observation, pre-
cluding their use on states that must be estimated over time, e.g., velocities. In contrast,

Safe Output Feedback Motion Planning from Images 3

our method only seeks to invert a subset of the state, which is then used in a dynamic
observer to estimate the unobserved states. Other work [8] combines CLFs and CBFs
to safely reach goals from observations, but focuses on simpler LiDAR sensor models.

Finally, our work relates to planning under uncertainty. Funnel-based methods buffer
motion primitives with tracking tubes under perfect [16] and vision-based [27] feedback
control. In contrast, we do not rely on precomputed primitives, and can plan novel tra-
jectories. Other methods [1, 2] consider measurement error in planning but are either
restricted to linear systems or simple sensor models. These methods are instances of
the generally intractable belief-space planning problem; solving this problem requires
simplifying assumptions [24] that may compromise safety. We do not solve the full
belief-space planning problem; instead of tracking belief distributions, our set-based
approach bounds the reachable states and state estimates under the worst-case error.

3 Preliminaries and Problem Statement
We consider uncertain continuous-time control-affine nonlinear systems (which include
many common mechanical systems of interest [15]) with output observations

ẋ(t) = f(x(t)) +Bu(t) +Bw(t)wx(t) (1a)

y(t) = h(x(t), θ) +Bywy(t) (1b)

where f : X → X , X ⊆ Rnx , B ∈ Rnx×nu , Bw : [0,∞) → Rnx×nwx , By ∈
Rny×nwy , U ⊆ Rnu , and wx ∈ Rnwx is a possibly stochastic state disturbance where
∥wx(t)∥ ≤ w̄x, for all t. Without loss of generality, we assume ∥Bw(t)∥ ≤ 1, for all
t. Norms ∥ · ∥ without subscript are the (induced) 2-norm. We obtain high-dimensional
observations y ∈ Y ⊆ Rny (e.g., N × N -pixel RGB-D images, leading to ny =
4N2), generated by a deterministic, nonlinear function h(x, θ) : X ×Θ → Y which is
unknown to the robot; here, θ ∈ Rnp are external parameters (e.g., location of obstacles,
map of environment, etc.). The observations may be corrupted by (possibly stochastic)
sensor noise wy(t) ∈ Rnwy , where ∥wy(t)∥ ≤ w̄y , for all t. We note that our results
also apply to time-varying B(t) under some conditions on its null-space.

We assume that (1a) is locally incrementally exponentially stabilizable (IES) in do-
main Dc ⊆ X , that is, there exists an α, λ > 0, and some feedback controller such that
for any nominal trajectory x∗(t) ⊆ Dc, ∥x∗(t)− x(t)∥ ≤ αe−λt∥x∗(0)− x(0)∥ for all
t. While stronger than asymptotic stability, many underactuated systems are IES [19].
We also assume that (1) is locally universally detectable [17], which ensures that any
two trajectories x1(t) and x2(t) in a domain De ⊆ X that yield identical observations
y1(t) and y2(t) for all t converge to each other as t → ∞, i.e., x1(t) → x2(t). Similar
assumptions are common in the estimation literature [20] to ensure estimator conver-
gence, and do not require the full state to be observable instantaneously, e.g., as in [10].
Definitions: We assume X is partitioned into (un)safe (Xunsafe) Xsafe sets (e.g., obsta-
cles). Let (S>0

n) Sn be the set of (positive definite) symmetric n × n matrices. For
Q ∈ Sn, denote λ̄(Q) and λ(Q) as its maximum and minimum eigenvalues. If Q(x)
is a matrix-valued function over a domain D, we denote λ̄D(Q)

.
= supx∈D λ̄(Q(x))

and λD(Q)
.
= infx∈D λ(Q(x)). Let the Lie derivative of a matrix-valued function

Q(x) ∈ Rn×n along a vector y ∈ Rn be denoted as ∂yQ(x)
.
=

∑n
i=1 y

i ∂Q
∂xi , where

xi is the ith element of vector x. For a smooth manifold X , a Riemannian metric tensor
M : X → S>0

nx
provides the tangent space TxX with an inner product δ⊤x M(x)δx,

where δx ∈ TxX . The length l(c) of a curve c : [0, 1] → X between c(0), c(1) is l(c) .
=

4 G. Chou et al.∫ 1

0

√
V (c(s), cs(s))ds, where V (c(s), cs(s))

.
= cs(s)

⊤M(c(s))cs(s), and cs(s)
.
=

∂c(s)/∂s. The Riemannian distance between p, q ∈ X is d(p, q)
.
= infc∈C(p,q) l(c),

where C(p, q) contains all smooth curves between p and q; a curve γ(p, q) achieving
the argmin is called a geodesic.

3.1 Problem statement
We formally state the output feedback motion planning problem (OFMP) as follows:
OFMP: Given start xI , external parameter θ ∈ Dθ, goal region G ⊆ Dx (Dθ, Dx are
defined in the next paragraph), and safe set Xsafe, we want to plan a state-control tra-
jectory x∗ : [0, T] → X , u∗ : [0, T] → U , x∗(0) = xI , under the nominal dynamics
ẋ(t) = f(x(t)) + Bu(t) such that in execution on the true system (1a), x(t) ∈ Xsafe
for all t ∈ [0, T] and x(T) ∈ G. At runtime, we do not observe x(t); we are only given
observations y(t) generated by (1b), and must track x∗ using a (dynamic) output feed-
back controller that we must also design. We assume f , B, Bw, and By are known; h
is unknown; wx, wy are not measurable but w̄x and w̄y are known. If nr ≤ nx of the
states can be inferred directly from y, we denote these indices as the reduced observa-
tion yr = Crx ∈ Rnr , where Cr ∈ {0, 1}nr×nx is a boolean matrix that selects the
observable dimensions of x. We assume that we are given Cr. Let x(t) be the executed
trajectory of (1a), and let x̂(t) be the trajectory of the state estimate. We are given upper
bounds d̄c(0), d̄e(0)on the Riemannian distance between the true and estimated initial
state de(x(0), x̂(0)) and between the true/planned initial state dc(x

∗(0), x(0)); de(·, ·)
and de(·, ·) are defined with respect to (w.r.t.) metrics Mc and Me, defined in Sec. 3.2.

To help solve the OFMP, we are given two datasets. The first is S = {h(xi, θi), xi, θi}Ndata
i=1 ,

a dataset of noiseless (cf. Sec. 6 for discussion on how to relax this assumption) observation-
state-parameter triplets, where xi ∈ Dp ⊆ X , θi ∈ Dθ ⊆ Θ are collected by any means
(sampling, demonstrations, etc.). We assume Dp and Dθ (the domains where S is drawn
from) are known, though this can be relaxed by estimating these sets as in [5,13]. We are
also given a validation dataset V = {h(xi, θi), xi, θi}Nval

i=1 collected i.i.d. in Dp×Dθ. In
the context of (1b), h(x, θ) may be a simulated image, and Bywy(t) is the sensor noise
at runtime. We also define a “trusted domain” for planning, D = Dx ×Dθ ⊆ X × Θ,
where Dx = Dr ∩Dc ∩De and Dr is defined as follows: for ease, suppose Cr selects
the first nr indices of x, then Dr = (CrDp) × Rnx−nr . Dr is defined similarly if Cr

selects other indices (cf. Fig. 9). Ultimately, Dx is a set where a stabilizing controller
(in Dc) and state estimator (in De) exist, and where the perception is valid (in Dr).
3.2 Control/observer contraction metrics (CCMs/OCMs)
As our approach builds on contraction theory, we provide an overview here. Control
contraction theory [18] studies incremental stabilizability by measuring the distances
between trajectories w.r.t. a Riemannian metric Mc : X → S>0

nx
. For (1a) if wx ≡ 0, a

sufficient condition [22] for Mc to be called a control contraction metric (CCM) is:

B⊤
⊥

(
− ∂fWc(x) +A(x)Wc(x) +Wc(x)A(x)⊤ + 2λcWc(x)

)
B⊥ ⪯ 0 (2a)

B⊤
⊥

(
∂BjWc(x)

)
B⊥ = 0, j = 1...nu, (2b)

for all x ∈ Dc, where Wc(x)
.
= M−1c (x), A(x) = ∂f(x)

∂x , and B⊥ is a basis for the
null-space of B. The CCM also defines a controller u : X × X × U → U , which
takes the current state x(t) and a state/control x∗(t), u∗(t) on the nominal state/control
trajectory being tracked x∗ : [0, T] → X , u∗ : [0, T] → U , and returns a u that contracts
x towards x∗ at rate λc > 0. The controller u(x, x∗, u∗) can be computed directly via

Safe Output Feedback Motion Planning from Images 5

Wc(x) (cf. Sec. 4.2). If wx ≡ 0, for any nominal x∗(t), applying u(x, x∗, u∗) renders
the system closed-loop IES, i.e., ∥x(t) − x∗(t)∥ ≤ αc∥x(0) − x∗(0)∥e−λct for αc >
0. For bounded wx, (1a) remains in a tube around x∗(t); we exploit this in Sec. 4.2.
Contraction also analyzes the convergence of state observers [7,17], i.e., whether a state
estimate x̂(t) approaches the true state x(t). Consider the nominal closed-loop system
ẋ = f(x) + Bu(x̂, x∗, u∗) with noiseless observations y = h(x, θ) and a nominal
observer ˙̂x = f(x̂) +Bu(x̂, x∗, u∗) + 1

2ρ(x̂)Me(x̂)C(x̂)⊤(y − h(x̂, θ)) (3)

for the nominal system, where C(x) = ∂h(x,θ)
∂x , ρ(x) ≥ 0 is a multiplier term, and

Me : X → S>0
nx

is called an observer contraction metric (OCM), which should satisfy

∂f+BuWe(x̂) +We(x̂)A(x̂) +A(x̂)⊤We(x̂)− ρ(x̂)C(x̂)⊤C(x̂) ≤ −2λeWe(x̂) (4)

for all x̂ ∈ De ⊆ X , u ∈ U . Here, We(x̂) = M−1e (x̂). To show that the estimated and
true trajectories x̂(t) and x(t) converge, we can analyze a nominal “meta-level” virtual
system with state q [26], which recovers the nominal x(t) and x̂(t) when integrated
from initial conditions q(0) = x(0) and q(0) = x̂(0):

q̇ = f(q) +Bu(x̂, x∗, u∗) + 1
2ρ(x̂)Me(x̂)C(x̂)⊤(y − h(q, θ)). (5)

By setting q = x̂, we recover the estimator dynamics (3); if we set q = x, we
recover ẋ = f(x) + Bu(x̂, x∗, u∗). We can then analyze the convergence of x̂ to x
via (5), and [26] shows that if (4) holds, then x̂(t) contracts at some rate γ ∈ (0, λe]
towards x(t). If Me(x) and C(x) are constant, one can show that this holds for γ = λe.
In particular, ∥x(t)− x̂(t)∥ ≤ αe∥x(0)− x̂(0)∥e−λet for αe > 0, and x̂(t) remains in
a tube around x(t) if (3) is perturbed. For polynomial systems of moderate dimension
(nx ≲ 12) with polynomial observation maps, CCMs and OCMs can be found via
convex Sum of Squares (SoS) programs [22]. CCMs/OCMs can also be found for high-
dimensional non-polynomial systems via learning-based methods (e.g., [5, 23]).

4 Method

u(x̂, x∗
, u

∗) ẋ = f(x) +Bu(x̂, x∗, u∗) +Bwwx

ĥ−1(y, θ)

θ

y

ŷrx̂

System dynamicsCCM-based controller

OCM-based observer
˙̂x = f(x̂) +Bu(x̂, x∗, u∗) +

) + 1

2
ρMeC

⊤
r
(ŷr − Crx̂)

(x∗
, u

∗)
Plan:

Compute tubes
2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

OFFLINE ONLINE

Ωc,Ωe

(e.g. obstacle map)

Fig. 2. Our method. Offline: After learning a perception system ĥ−1 (Sec. 4.1), we bound its error
to derive tracking tubes under imperfect perception (Sec. 4.2). We use these tubes to find safely-
trackable plans (Sec. 4.4). Online: We design a CCM/OCM-based controller/observer (Sec. 4.3)
to track the plan/perform state estimation at runtime, using ĥ−1 to process rich observations y.

We describe our solution to the OFMP (cf. Fig. 2). Using dataset S , we first train a
perception system that returns a reduced-order observation that simplifies the search for
the contraction metrics (Sec. 4.1). Second, we bound the error of the learned perception
module, and propagate this perception error bound through the system to derive bounds
on the tracking and estimation error when using a CCM-/OCM-based controller/esti-
mator (Sec. 4.2). Third, we obtain a CCM and OCM which optimizes this bound via
SoS programming (Sec. 4.3). Finally, we use these bounds to constrain a planner to
return trajectories that enable safe runtime tracking and robust goal reachability from
observations (Sec. 4.4). For space, all proofs for the theoretical results are in App. C.

6 G. Chou et al.

4.1 Learning a perception module for contraction-based estimation

Let us reconsider the observer (3), which updates its estimate directly using y−h(x̂, θ)
in the rich observation space. To implement (3), one can use S to train a deep approxi-
mation of h, denoted ĥ, design an OCM satisfying (4) for C(x̂) = ∂ĥ(x̂,θ)

∂x , and plug ĥ
and the OCM into (3). This naïve solution is flawed: 1) as ny is large, learning an accu-
rate ĥ can be difficult; 2) the C(x̂) in (4) becomes the Jacobian of a (non-polynomial)
deep network, complicating OCM synthesis by precluding the use of SoS programming.

We can take a more structured approach if we know which states can be directly
inferred from y; this is reasonable if the states have semantic meaning (e.g., poses,
velocities). Recall Cr (Sec. 3.1) defines this reduced observation as yr = Crx ∈ Rnr .
We can then learn an approximate inverse ĥ−1(y, θ) : Rny × Rnp → Rnr which
maps a y and θ to the reduced observation. Note that if each unique y corresponds
to a unique yr, this inverse is well-defined and does not require the full state to be
invertible from a single y. Concretely, consider a car with position, orientation, and
velocity states [px, py, ϕ, v] and RGB-D data from an onboard camera (Fig. 1.A) driving
in several obstacle fields. In this case, yr = [px, py, ϕ]

⊤ and θ could be the obstacle
locations. We model ĥ−1 as a neural network and train it via the mean squared error
between ĥ−1(yi, θi) and Crxi for all i ∈ 1, . . . , Ndata. Note that as the nominal reduced
observations are roughly linear, i.e., ĥ−1(h(x, θ), θ) ≈ Crx, this simplifies the nominal
observer (3) to ˙̂x = f(x̂)+Bu(x̂, x∗, u∗)+ 1

2ρ(x̂)Me(x̂)C
⊤
r Cr(x− x̂), and simplifies

OCM synthesis: as C⊤r Cr is constant, (4) is SoS-representable, despite ĥ−1 being non-
polynomial. Compared to the nominal reduced observer, the true observer we use,

˙̂x = f(x̂) +Bu(x̂, x∗, u∗) + 1
2
ρ(x̂)Me(x̂)C

⊤
r (ĥ−1(h(x, θ) +Bywy, θ)− Crx̂), (6)

experiences disturbance from model error Bwwx, sensor noise Bywy , and learning error
∥ĥ−1(h(x, θ), θ)− Crx∥. Quantifying these errors for our vision-based observer (6) is
one of our core contributions and is key in deriving tracking bounds useful for planning.

4.2 Bounding tracking error and state estimation error for planning

To begin, assume we have a CCM Mc and an OCM Me that are valid in Dc ⊆ X and
De ⊆ X and which contract at rate λc and λe, respectively. We discuss CCM/OCM
synthesis in Sec. 4.3. Define the nominal closed-loop state and virtual dynamics as:

ẋ(t) = f(x(t)) +Bu(x(t), x∗(t), u∗(t)) (7a)

q̇(t) = f(q(t)) +Bu(x̂(t), x∗(t), u∗(t)) + 1
2
ρ(q(t))Me(q(t))C

⊤
r Cr(x(t)− q(t)) (7b)

Factor the CCM/dual OCM as Mc(x) = Rc(x)
⊤Rc(x) and We(x) = Re(x)

⊤Re(x).
Let γt

c(s), s ∈ [0, 1] be the geodesic between x∗(t) and x(t) w.r.t. Mc, and γt
e(s), s ∈

[0, 1] be the geodesic between x̂(t) and x(t) w.r.t. We. [17] shows if γt
c(s) ⊆ Dc for all

t, s and (7a) is perturbed by wc(t), i.e., ẋ = f(x)+Bu(x, x∗, u∗)+wc, the Riemannian
distance w.r.t. Mc between the true and nominal state, dc(t) = dc(x

∗(t), x(t)), satisfies:

ḋc(t) ≤ −λcdc(t) +
∫ 1

0
∥Rc(γ

t
c(s))wc(t)∥ds. (8)

If γt
e(s) ⊆ De for all t, s and (7b) is perturbed by additive wq(t) [26], the Riemannian

distance w.r.t. We between the true and estimated state, de(t) = de(x(t), x̂(t)), satisfies
ḋe(t) ≤ −λede(t) +

∫ 1

0
∥Re(γ

t
e(s))wq(t)∥ds. (9)

Safe Output Feedback Motion Planning from Images 7

We will use (8) and (9) to obtain upper bounds on the tracking/estimation Riemannian
distances, denoted as d̄c(t) and d̄e(t), respectively. These upper bounds define tracking
and state estimation tubes, i.e., a bound on where x and x̂ can be, which we denote
as Ωc(t) = {x | dc(x

∗(t), x) ≤ d̄c(t)} and Ωe(t) = {x̂ | de(x(t), x̂) ≤ d̄e(t)},
respectively. These tubes are crucial in informing where the planner can safely visit,
since tracking any Ωc-buffered candidate trajectory within Dx which remains in Xsafe
is guaranteed to remain safe. However, for these tubes to be usable in a planner, we
need explicit bounds on the integral terms in (8) and (9). In this section, we first present
the final derived bounds on the integrals (Lemmas 1 and 2), describe the ideas behind
the derivations, and postpone the full mathematical details to App. B.

Lemma 1 (ḋc(t)). The integral term in (8) can be bounded as∫ 1

0
∥Rc(γ

t
c(s))wc(t)∥ds ≤

√
λ̄Dc

(Mc)w̄x + L∆kde. (10)

In the second term, L∆k is the Lipschitz constant of the controller error (to be described
later) which, together with state estimate error de, bounds the destabilizing effect of us-
ing incorrect state estimates in feedback control. This term, which can be explicitly es-
timated and thus concretely informs tube size in planning, is the key novelty of Lemma
1. Overall, (10) states that tracking degrades with larger dynamics and estimation error.

Lemma 2 (ḋe(t)). Let σ̄(By) denote the maximum singular value of By . For constant
ρ and Me, the integral in (9) simplifies to ∥Rewq(t)∥ and can be bounded as:

∥Rewq(t)∥ ≤
√

λ̄(We)w̄x + 1
2
ρλ̄(Me)

1/2
(
Lĥ−1

√
σ̄(By)w̄y + ϵ̄{1,2,3}(x

∗, θ)
)

(11)

We write Lemma 2 for constant ρ and Me, as this is the representation used in Sec.
5. Here, Lĥ−1 is the local Lipschitz constant of ĥ−1, and ϵ̄{1,2,3}(x

∗, θ) are (spatially-
varying) bounds on its error ∥ĥ−1(h(x, θ), θ) − Crx∥, each with different strength-
s/weaknesses (cf. Fig. 4 for a visual overview). Relative to prior work, Lemma 2 is
novel as it bounds high-dimensional measurement error and learned perception module
error. Overall, (11) states that estimation accuracy degrades with larger dynamics error,
measurement error, and learned perception module error.
Bounding tracking error: We explain more details behind Lemma 1. As Lemma 1
relies on a bound for wc(t), we first break down the components that make up wc(t).
Relative to the nominal closed-loop dynamics (7a), our true closed-loop system

ẋ(t) = f(x(t)) +Bu(x̂(t), x∗(t), u∗(t)) +Bw(t)wx(t) (12)

is subject to two disturbances. The first is the dynamics error Bw(t)wx(t). The sec-
ond is imperfect state feedback: we apply u(x̂, x∗, u∗) instead of u(x, x∗, u∗), which
unlike the latter, may not stabilize (7a) at rate λc. Naïvely, one can bound this error
by rewriting (12) as ẋ = f(x) + Bu(x̂, x∗, u∗)−Bu(x, x∗, u∗) + Bu(x, x∗, u∗) +
Bwwx, where the difference between output/perfect state feedback is in red. While
∥Bu(x̂, x∗, u∗)− Bu(x, x∗, u∗)∥ is a valid disturbance bound, we can obtain a tighter
bound by exploiting the structure of u(x, x∗, u∗). In general, many ufb ∈ U can make
ẋ = f(x) + B(u∗ + ufb) contract at rate λc towards x∗, w.r.t. Mc. Define ẋ∗ =
f(x∗)+Bu∗; then, the contracting ufb [22] are defined by a linear inequality constraint,

Ufeas(x, x
∗, u∗) = {ufb | γ⊤c,s(1)Mc(x)ẋ−γ⊤c,s(0)Mc(x

∗)ẋ∗ ≤ −λcdc(x
∗, x)2}, (13)

8 G. Chou et al.

u(x̂1, x
∗

, u
∗)

u
,1(x̂1, x, x

∗

, u
∗)

u(x̂2, x
∗

, u
∗) =

u(x, x∗

, u
∗) = (0, 0)

) =

U

U (x, x∗

, u
∗)

u
,2(x̂2, x, x

∗

, u
∗)

Fig. 3. uclosest can be much closer to
u(x̂, x∗, u∗) than u(x, x∗, u∗): we
show this for two different state es-
timates x̂1 and x̂2.

where γc,s(·) = ∂γc(·)
∂s . As in [22], we select the

minimum-norm feasible control to be u(x̂, x∗, u∗),
i.e., u(x̂, x∗, u∗) = argminu∈Ufeas(x̂,x∗,u∗) ∥u∥.
Then, using Ufeas, we can rewrite (12) as ẋ = f(x)+
B(u(x̂, x∗, u∗)− uclosest + uclosest) + Bwwx, where
uclosest(x̂, x, x

∗, u∗)
.
= argminu∈Ufeas(x,x∗,u∗) ∥u −

u(x̂, x∗, u∗)∥ is the closest control input to
u(x̂, x∗, u∗) that contracts the nominal dynam-
ics at x. Bounding the imperfect state feed-
back as ∥Bu(x̂, x∗, u∗) − Buclosest∥ instead of
∥Bu(x̂, x∗, u∗)−Bu(x, x∗, u∗)∥ can be far tighter,
as u(x̂, x∗, u∗) may still contract the system at rate
λc (Fig. 3: x̂2 case), or there can be a contracting u closer to u(x̂, x∗, u∗) than
u(x, x∗, u∗) (Fig. 3: x̂1 case). Combining with the dynamics error, we can write wc:

wc(t)
.
= Bu(x̂(t), x∗(t), u∗(t))−Buclosest(t) +Bw(t)wx(t) (14)

As (14) still depends on x and x̂, which are unknown at planning time, extra steps must
be taken to obtain a useful bound that is independent of x and x̂; we achieve this by
bounding the first two terms of (14) via a Lipschitz constant. Define ∆k(x̂, x, x∗, u∗) =
maxs∈[0,1] ∥Rc(γ

t
c(s))B(u(x̂, x∗, u∗) − uclosest)∥, and L∆k as its local Lipschitz con-

stant in the first argument, i.e., for all x∗ ∈ D, u∗ ∈ U , {x | dc(x∗, x) ≤ c̄}, and
{x̂ | de(x, x̂) ≤ ē} for predetermined c̄, ē > 0 (adjustable based on the expected error),

|∆k(x̂1, x, x
∗, u∗)−∆k(x̂2, x, x

∗, u∗))| ≤ L∆kde(x̂1, x̂2). (15)

See Rem. 1 for details on estimating L∆k. In estimating L∆k, we measure input dis-
tances w.r.t. We; this reduces conservativeness due to the form of our estimation error
bound. Combining (14)-(15) yields Lemma 1; see App. C for the detailed proof.
Bounding estimation error: Now, we provide more details behind Lemma 2. To
bound

∫ 1

0
∥Re(γ

t
e(s))wq(t)∥ds, we first note that ∥wq∥ is bounded by the sum of the

disturbance magnitudes when q = x and when q = x̂ [26]. If q = x, (7b) becomes
ẋ = f(x) + Bu(x̂, x∗, u∗); relative to the true closed-loop dynamics (12), the distur-
bance is Bw(t)wx(t). If instead q = x̂, (7b) becomes ˙̂x = f(x̂) + Bu(x̂, x∗, u∗) +
1
2ρ(x̂)Me(x̂)C

⊤
r Cr(x− x̂); relative to the true observer (6), the disturbance is

we(t)
.
= 1

2
ρ(x̂(t))Me(x̂(t))C

⊤
r (ĥ−1

(
h(x(t), θ) +Bywy(t), θ

)
− Crx(t)). (16)

Two errors drive we(t): the perception error ĥ−1(h(x, θ), θ)−Crx, and the runtime ob-
servation noise Bywy . Combining with the dynamics error gives wq(t)

.
= Bw(t)wx(t)+

we(t). Bw(t)wx(t) can be bounded as in Lemma 1, but we(t) is harder to bound. Let
yp = h(x, θ) and y = h(x, θ) +Bywy . We rewrite the norm of the red term in (16) as:

∥ĥ−1
(
y, θ

)
− Crx∥ = ∥ĥ−1

(
y, θ

)
− ĥ−1

(
yp, θ

)
+ ĥ−1

(
yp, θ

)
− Crx∥

≤ Lĥ−1∥Bywy∥︸ ︷︷ ︸
from measurement noise

+ ∥ĥ−1(yp, θ)− Crx∥︸ ︷︷ ︸
from learning error .=ϵ(x,θ)

. (17)

Here, Lĥ−1 is the local Lipschitz constant of the learned inverse function in y, i.e.,

∥ĥ−1(ỹ, θ)− ĥ−1(y̌, θ)∥ ≤ Lĥ−1∥ỹ − y̌∥, ∀ỹ, y̌ ∈ Dy ⊕ Yd, ∀θ ∈ Dθ, (18)

Safe Output Feedback Motion Planning from Images 9

where Dy = h(Dr, Dθ) is the image of the training data domains, ⊕ is the Minkowski
sum, and Yd = {Bywy | ∥wy∥ ≤ w̄y} is the set of feasible measurement noise. The first
braced term in (17) bounds the effect of measurement error on the reduced observation
and is valid for all (x, θ) ∈ Dr ×Dθ and observation noise satisfying ∥wy∥ ≤ w̄y .

X
D

e(x)

ē1

X
D

e(x)

ē2(x∗)

x∗

S

Ωc
X

D

e(x)

ē3(x∗)

x∗ Ωc

LpR

(A) (B) (C)

r r r

Fig. 4. Our perception error bounds. (A) ϵ̄1 is simple but conservative. B) ϵ̄2(x∗) is tighter, as it
only seeks to be valid over the tube Ωc. However, it scales linearly with the size of Ωc. C) ϵ̄3(x∗)
can be tighter for larger Ωc by adding a Lipschitz-based buffer to the largest training error in Ωc.

Now, consider the second braced term in (17). How can we bound the learned per-
ception module error ϵ(x, θ) .

= ∥ĥ−1
(
h(x, θ), θ

)
− Crx∥ over Dr ×Dθ? We describe

three options (Fig. 4) at a high level, highlight their strengths/drawbacks, and provide
the details in App. B. The first bound, denoted ϵ̄1, is a constant bound on ϵ(x, θ) glob-
ally over Dr ×Dθ (Fig. 4.A). This works well if the error is consistent, but is loose if
there are any error spikes. The second bound (Fig. 4.B), denoted ϵ̄2(x

∗, θ), bounds the
error only in the tube Ωc around a nominal x∗, using the Lipschitz constant of ϵ(x, θ)
(denoted Lp). Due to its locality, ϵ̄2(x∗, θ) can be tighter than ϵ̄1; however, it scales
linearly with the size of Ωc, even if ϵ(x, θ) remains constant. The third bound, ϵ̄3(x∗, θ)
(Fig. 4.C), also bounds the error in the tube but avoids the linear scaling by taking the
worst training error in Ωc and buffering it with a constant value, which depends on Lp

and the dataset dispersion R. Each of these bounds ϵ̄{1,2,3} on ϵ(x, θ) can be plugged
into Lemma 2 to upper bound ϵ(x, θ); see App. B for details.
Integrating the differential inequalities: Now that we can bound the RHSs of the dif-
ferential inequalities (8) and (9) via Lemmas 1 and 2, we show how these bounds on ḋc
and ḋe bound the values of dc and de, thereby providing the desired tubes. By grouping
terms in (8)-(9), we have the following affine vector-valued differential inequality,[
ḋc
ḋe

]
≤

[
−λc L∆k

(∗) −λe

] [
dc
de

]
+

[√
λ̄Dc(Mc)w̄x√

λ̄(We)w̄x + ρ
2
λ̄(Me)

1/2
(
Lĥ−1 w̄y + ϵ̄{1,2̃,3}(x

∗, θ)
)] , (19)

where we regroup the terms for ϵ̄2(x∗, θ) as ϵ̄2̃(x
∗, θ)

.
= ϵ̄2(x

∗, θ)−Lpdc/
√
λDc

(Mc),

and (∗) = 0.5Lpρ
√
λ̄(Me)/λDc

(Mc) if using ϵ̄2 and 0 else. Then, we have this result:

Theorem 1 (From derivative to value). Let RHS denote the right hand side of (19).
Given bounds on the Riemannian distances at t = 0: dc(0) ≤ d̄c(0) and de(0) ≤ d̄e(0),
upper bounds d̄c(t) ≥ dc(t) and d̄e(t) ≥ de(t) for all t ∈ [0, T] can be written as[

dc(t)
de(t)

]
≤

∫ t

τ=0

RHS
(
τ,

[
dc
de

])
dτ

.
=

[
d̄c(t)
d̄e(t)

]
, dc(0) = d̄c(0), de(0) = d̄e(0). (20)

Evaluating the integral in (20) is efficient as RHS is affine, so d̄c and d̄e can be
readily used in planning (cf. Sec. 4.4). However, note that these tubes are only locally
valid, e.g., evaluating the tubes outside of Dx will give incorrect values. We detail a
set of validity conditions in Sec. 4.4, prove their sufficiency in Thm. 2, use them in
our planner, and show in Sec. 5 that a baseline that ignores these conditions is unsafe.
Finally, we close with a remark on how we estimate the constants in the bounds.

10 G. Chou et al.

Remark 1 (Estimating constants from data). The derived bounds depend on several
constants that are unknown a priori, such as L∆k and Lĥ−1 , and if ϵ̄1, ϵ̄2, or ϵ̄3 is being
used, ϵ̄1, Lp, and {Lp,R} also need to be estimated, respectively. As overapproximat-
ing each constant also yields valid (and looser) bounds, we use the i.i.d. validation set
V to overestimate each constant via a sampling-based approach based on extreme value
theory [5]. This returns a value which overestimates the true constant with a user-desired
probability δ, where δ holds in the limit of infinite samples. See [5, 13, 28] for details.

4.3 Optimizing CCMs and OCMs for output feedback
We briefly discuss how we obtain the CCM/OCM that define the controller/observer;
for space, we detail our method in App. D. We write two SoS programs to independently
synthesize the CCM/OCM, which are approximately optimized to minimize their tube
sizes. We search over polynomial CCMs and constant OCMs. For polynomial dual
CCMs Wc(x), we also find a constant metric W̄c ⪰ Wc(x), for all x, in order to simplify
constraint checking in Sec. 4.4. For linear systems, these SoS programs simplify to a
standard semidefinite program (SDP), which scale to higher-dimensional systems.

4.4 Solving the OFMP

Algorithm 1: Contraction-based Output feedback RRT (CORRT)
Input: xI , G, θ, S, training error {ei}

Ndata
i=1 , estimated constants, d̄c(0), d̄e(0), c̄, ē

1 T ← {(xI , d̄c(0), d̄e(0), 0)} // node: state, CCM/OCM Riem. dist. bound, time
2 P ← {(∅, ∅)} // parent: previous control/dwell time
3 while True do
4 (xn, d̄

n
c , d̄

n
e , tn)← SampleNode(T) // sample node from tree

5 (up, tp)← SampleProposedControl () // sample ctrl/dwell time
6 (x∗

p (t), u
∗
p (t)), t ∈ [tn, tn + tp)← IntegrateDyn (xn, up, tp) // get extension

7 (d̄n
c (t), d̄

n
e (t)), t ∈ [tn, tn + tp)← ErrBnd (d̄n

c , d̄n
e , x∗

p (t), u∗
p (t), S, {ei}, θ) // new tube

8 (bcL, beL)← (d̄n
c (t) ≤ c̄, d̄n

e (t) ≤ ē), ∀t ∈ [tn, tn + tp) // check upper bound
9 bc ← Ωn

c (t) ⊆ (Dc ∩Dr ∩ Xsafe), ∀t ∈ [tn, tn + tp) // check tracking tube
10 be ← Ωn

c (t)⊕ (Ωn
e (t)⊖{x(t)}) ⊆ (De ∩Dc), ∀t ∈ [tn, tn + tp) // chk. estimator tube

11 if bcL ∧ beL ∧ bc ∧ be then T ← T ∪ {(x∗
c(tn + tp), d̄

n
c (tn + tp), d̄

n
e (tn + tp), tp)};

P ← P ∪ {(up, tn + tp)}
12 else continue // add extension if all checks pass
13 if ∃t, Ωn

c (t) ⊆ G then break; return plan // return if in G

Given the CCM, OCM, and the ability to compute tracking tubes, we can now solve
the OFMP. Our solution builds upon a kinodynamic RRT [15], though we note that the
tubes derived in Sec. 4.2 are planner-agnostic. We grow a search tree T by integrating
sampled controls held for sampled dwell-times until G is reached. To ensure we stay
in Xsafe at runtime, we impose extra constraints on each candidate transition, which are
informed by the tubes; this translates to a restriction on where T can grow (cf. Fig. 5).

x*(0)

⌦1
c(t1)

[

⌧2[t1,t1+tc)

⌦1
c(⌧)

x1(⌧), ⌧ 2 [t1, t1 + tc)

x1(t1)

XmMb�72X Dx
x2(t2)

⌦2
c(t2)

[

⌧2[t2,t2+tc)

⌦2
c(⌧)

x2(⌧), ⌧ 2 [t2, t2 + tc)

rejected

accepted

Fig. 5. Visualization of Alg. 1.

To use the Riemannian distance bounds d̄c(t)
and d̄e(t) from (20) in planning, recall that these
bounds define sets centered around x∗(t) and x(t),
Ωc(t) and Ωe(t), which x and x̂ are guaranteed
to remain within. We can use these sets for colli-
sion and constraint checking. If the metric defin-
ing Ω(t) is constant, each Ω(t) defines an ellipsoid,
i.e., Ωc(t) = {x(t) | (x(t)−x∗(t))⊤Mc(x(t)−x∗(t)) ≤ d̄c(t)

2} and Ωe(t) = {x̂(t) |
(x̂(t)−x(t))⊤We(x̂(t)−x(t)) ≤ d̄e(t)

2}. If the metric is state-dependent (as is the case
for some CCMs we use), we can use W̄c (see Sec. 4.3) to obtain an ellipsoidal outer
approximation of Ωc(t): Ωc(t) ⊆ {x(t) | (x(t) − x∗(t))⊤(W̄c)

−1(x(t) − x∗(t)) ≤

Safe Output Feedback Motion Planning from Images 11

d̄c(t)
2} .

= Ω̃c(t) that can ease constraint checking. Thus, we can guarantee at planning
time that in execution, x(t) ∈ Ω̃c(t), and x̂(t) ∈ Ω̃c(t) ⊕ (Ωe(t) ⊖ {x(t)}), where
A⊖B

.
= {x−y | x ∈ A, y ∈ B}. As (20) defines Ω for any nominal trajectory, we can

quickly compute tubes along all edges in T . For instance, suppose we wish to extend
from some node in T , x∗n(tn), which satisfies dnc (tn) ≤ d̄nc (tn) and dne (tn) ≤ d̄ne (tn),
to a candidate state x∗n(tn + tp) by applying control u over [tn, tn + tp). Then, using
(20), we can obtain d̄nc (t) and d̄ne (t), for all t ∈ [tn, tn + tp), and to remain collision-
free in execution, we require the induced Ω̃c(t) ⊆ Xsafe; we check this in line 9 of our
planner, Alg. 1. Here, we assume obstacles are inflated to account for robot geometry.

To remain collision-free at runtime, we must add extra constraints on T to ensure
the tubes are valid, as discussed in Sec. 4.2. We describe these constraints now, and
prove they are sufficient in Thm. 2. At a high level, the estimated constants, CCM, and
OCM must be valid for any x and x̂ that can be reached at runtime. Thus, in line 8,
we ensure dc(t) and de(t) remain less than c̄ and ē for all time, so that L∆k (15) is
valid. In line 9, we ensure that Ωc(t) ⊆ Dc ∩ Dr, i.e., the system remains where the
controller can contract x towards x∗, and ϵ̄i is valid. In line 10, we ensure x̂ remains in
De ∩Dc; this ensures that (6) contracts towards the true state x via (2), and that a feasi-
ble feedback control exists in (13); ensuring this at planning time (when we only know
x∗(t)) requires a Minkowski sum of Ωc and Ωe ⊖ {x(t)}. Constraint-satisfying candi-
date extensions are added to T (line 11); else, they are rejected (line 12). This continues
until the goal is reached (line 13). We visualize our planner (Fig. 5), Contraction-based
Output feedback RRT (CORRT), detailed in Alg. 1. Finally, Thm. 2 shows our method
ensures safety and goal reachability if all estimated constants are valid; as our estimates
are probabilistically-valid, the overall guarantees are probabilistic (cf. Rem. 2):

Theorem 2 (CORRT correctness). Assume that L∆k, Lĥ−1 , and the estimated con-
stants in ϵ̄{1,2,3} are valid over their computed domains. Then Alg. 1 returns a trajectory
(x∗(t), u∗(t)), which when tracked on the true system (1a) using u(x̂, x∗, u∗) with state
estimates x̂ generated by (6), reaches G while satisfying x(t) ∈ Xsafe, for all t ∈ [0, T].

5 Results

We evaluate CORRT on a 4D car with RGB-D observations, a 6D quadrotor with RGB
observations, and a 14D acceleration-controlled 7DOF arm with RGB observations. All
observations are rendered in PyBullet. We compare with three baselines; two are shared
across experiments, so we overview them here. To show the need to plan where the
CCM/OCM are valid and the error bounds are accurate, Baseline 1 (B1) plans using the
tracking tubes from (20) inside Alg. 1 but is not constrained to stay within D, i.e., the
checks in line 8-10 of Alg. 1 are relaxed. To show the need to consider estimation error
in planning, Baseline 2 (B2) assumes perfect state knowledge in computing its tubes,
i.e., de(t) ≡ 0. All baselines execute with the same CCM/OCM as our method. See Ta-
ble 1 for error statistics and the video http://tinyurl.com/wafr22corrt for visualizations.

CORRT trk. err. CORRT est. err. B1 trk. err. B1 est. err. B2 trk. err. B2 est. err. B3 trk. err. B3 est. err.
Car 0.175 ± 0.117 0.032 ± 0.022 17.49 ± 79.86 143.4 ± 1202 1.520 ± 6.306 3.597 ± 19.90 — —

Quad 0.151 ± 0.187 0.029 ± 0.028 39.30 ± 142.1 52.64 ± 185.9 40.56 ± 302.1 63.53 ± 424.1 — —
Arm 2.0e-4 ± 1.3e-5 0.053 ± 0.039 2.0e-4 ± 1.4e-5 0.145 ± 0.239 — — 0.000 ± 0.000 0.316 ± 0.249

Table 1. Statistics on the tracking/estimation error reduction across all experimental results. “Trk.
err.” = ∥x∗(T)−x(T)∥/∥x∗(0)−x(0)∥. “Est. err.” = ∥x̂(T)−x(T)∥/∥x̂(0)−x(0)∥. In each
cell: average error ± standard deviation over all trials.

12 G. Chou et al.

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3Ours (Trial 1)

B2

Ours (Trial 2)
Tracking tube Estimation tube

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3B1
Tracking tube Estimation tube

Tracking tube Estimation tube

Tracking tube Estimation tube
(A) (B)

(C) (D)

xI xI

xI xI

G

G

G G

px

p
y

px

p
y

px

p
y

px

p
y

px

p
y

px

p
y

px

p
y

px

p
y

Fig. 6. 4D car. Planned, executed, and estimated trajectories, overlaid with corresponding tracking
and estimation tubes Ωc(t) and Ωe(t). For eight timesteps corresponding to the black dots on the
Ωe plot, we also show RGB component of the observations seen at runtime (bottom). A) and B):
two examples of CORRT, which safely reach the goal. C) and D): B1 and B2: both crash.

4D nonholonomic car We consider a ground vehicle in an obstacle field (Fig. 1.A),
governed by (E.15). The observations are given by 48x48 RGB-D images taken from a
front-facing onboard camera (Fig. 1.A, inset); this makes y ∈ R9216. Three states can be
directly inferred from a single image: px, py , and ϕ. For this example, θ ∈ R5 parame-
terizes the py-translation of each of the five obstacles. We are given Ndata = 250000 dat-
apoints to train the perception system ĥ−1, sampled uniformly from CrDp = [0, 13.5]×
[−2.5,−2.5]× [−π/3, π/3] and Dθ = [0.5, 1.5]× [−1.5,−0.5]× [0.5, 1.5]× [−1, 0]×
[0, 1]. We model ĥ−1 as a fully-connected neural network, with five hidden layers
of width 1024 and softplus activations. We use the method of Sec. 4.3 to obtain a
constant CCM Mc with λ̄(Mc) = 1, λ(Mc) = 0.07, and λc = 2.5, and a con-
stant OCM Me with λ̄(We) = 5.44, λ(We) = 0.05, and λo = 0.6, where Dc =
(−∞,∞)2 × [−π/3, π/3] × [2, 5] = De. To compute our tubes in CORRT, we use
ϵ̄3(x

∗, θ), since for this example Ωc may be large. The constants are estimated to be
L∆k = 3.28, Lĥ−1 = 0.05, Lp = 0.024, and R = 0.69. In computing our tubes, we
assume ∥wx∥ ≤ 0.05, d̄c(0) = 0.2, d̄e(0) = 0.1, and wy ∈ Rny satisfies ∥wy∥ ≤ 0.25.
To simulate noisy depth images, By is set to be a diagonal ny × ny matrix, with 0
diagonal entries for RGB indices and 1 for the depth indices.

We plan for 150 start/goals in D; our unoptimized implementation takes 2.5 minutes
on average. This is done offline; the tracking controller is computed at real-time rates
following Sec. 4.2 and [22]. For each trial, the obstacle map θ is selected uniformly
within Dθ. See Table 1 for error statistics. Over all trials, our method ensures x(t) and
x∗(t) always remain within the CORRT-computed Ωc(t) and Ωe(t), respectively, and
reduces the initial tracking/estimation error by a factor of > 5 and 30, respectively. In
contrast, B1 violates its Ωc(t) and Ωe(t) in 90/150 and 101/150 trials, respectively, fails
to reduce tracking/estimation error, and can crash. For instance, in Fig. 6.C, the plan
leaves Dr, causing observation error to increase (here, ĥ is inaccurate, since it is not
trained outside of Dr), destabilizing x̂ (Fig. 6.C, right), in turn destabilizing x, leading
to the crash. Similarly, B2 violates its computed Ωc in 60/150 trials (no Ωe(t) is com-
puted for B2, as it assumes perfect state information), fails to shrink tracking/estimation
errors, leading to crashes (see Fig. 6). As in B1, this crash also arises from observation
error. Overall, this experiment suggests that CORRT ensures safe goal-reaching for non-

Safe Output Feedback Motion Planning from Images 13

-3 -2 -1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

-3 -2 -1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

-10 -8 -6 -4 -2 0 2 4 6
0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6
0

2

4

6

8

10

Tracking tube Estimation tube

Tracking tube Estimation tube

Tracking tube Estimation tube

Tracking tube Estimation tube

Ours (Trial 1)

B2

Ours (Trial 2)

B1

(A) (B)

(C) (D)

xI xI

xI

xI

G

G

G

G

Fig. 7. 6D quadrotor. Planned, executed, and estimated trajectories, overlaid with Ωc(t) and
Ωe(t). Snapshots of the runtime observations are shown (bottom). A) and B): two examples
of CORRT, which safely reach the goal. C) and D): B1 and B2: both crash.

holonomic systems using RGB-D data, and that it generalizes to different environments
(i.e., obstacle layouts), while baselines are unsafe.
6D quadrotor We consider a planar quadrotor in an obstacle field (Fig. 1.B), gov-
erned by (E.16). The observations are given by 48x48 RGB images taken from a front-
facing onboard camera (Fig. 1.B, inset); this makes y ∈ R6912. Three states can be
directly inferred from an image: px, pz , and ϕ. Here, we consider a single set of map
configurations, i.e., θ is a singleton. We are given Ndata = 140000 datapoints to train
ĥ−1, sampled uniformly from CrDp = [−4.5, 4.5] × [0.5, 4.5] × [−π/4, π/4]. We
model ĥ−1 as a fully-connected neural network, with five hidden layers of width 1024
and ReLU activations. Using the method of Sec. 4.3, we obtain a polynomial CCM
Mc with λ̄Dc

(Mc) = 6.55, λDc
(Mc) = 0.22, and λc = 0.8, and a constant OCM

Me with λ̄(We) = 8.13, λ(We) = 0.1, and λe = 0.7, where Dc = (−∞,∞)2 ×
[−π/3, π/3]× [−4.5, 4.5]× [−1, 1]× [−2, 2] and De = (−∞,∞)2 × [−π/4, π/4]×
[−5, 5]× [−2.5, 2.5]× [−2.5, 2.5]. To update our tracking tubes in CORRT, we found it
sufficient to use the first error bound ϵ̄1, which we estimate to be 0.008, and L∆k = 3.6.
In computing our tubes, we assume ∥wx∥ ≤ 0.0125, d̄c(0) = 0.15, d̄e(0) = 0.1, and
noiseless images ∥wy∥ = 0.

We plan for 150 start/goals in D, taking 6 minutes on average (see Table 1 for statis-
tics). Across all trials, CORRT ensures x(t) and x̂(t) stay inside the CORRT-computed
tubes Ωc(t) and Ωe(t), respectively, and reduces the initial tracking/estimation error
by a factor of > 6 and 34. In contrast, B1 violates its computed Ωc(t) and Ωe(t) in
61/150 and 76/150 trials, respectively, fails to reduce error, and can be unsafe (see Fig.
7). Similarly, B2 violates its Ωc in 142/150 trials. We show concrete examples of this
in Fig. 7.C-.D; the plans in both cases exit Dr, moving to px and pz values outside
of the [−4.5, 4.5] × [0.5, 4.5] training range, leading to high ĥ−1 error. The plans also
take overly-aggressive turns that bring the velocities outside of De and Dc; this further
destabilizes the system, causing crashes in both cases. Overall, this experiment sug-
gests the need to ensure that ĥ−1, the CCM, and the OCM are correct, and that CORRT
ensures this to guarantee safety for underactuated systems via RGB observations.
17D manipulation task We consider an acceleration-controlled 7DOF Kuka arm,
where each joint follows double integrator dynamics (E.18), which is grasping an ob-
ject (a rubber duck) with an unknown orientation relative to the end effector. We assume

14 G. Chou et al.

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

t t t

0 0.5 1 1.5 2 2.5 3

-1

0

1

0 0.5 1 1.5 2 2.5 3
-1

0

1

0 0.5 1 1.5 2 2.5 3
-1

0

1

t t t

φ1(t)− φ̂1(t) φ2(t)− φ̂2(t) φ3(t)− φ̂3(t)

E
rr
or

E
rr
or

E
rr
or

E
rr
or

E
rr
or

E
rr
or

(A)

(B)

Fig. 8. 7DOF arm. State estimate error, overlaid with Ωe(t) (in gray). Runtime observations are
shown (bottom). A): when using CORRT, the state estimate error remains in Ωe(t) and achieves
|ϕ̂i(T)− ϕi(T)| ≤ 0.1. B3 fails to meet this requirement. B) B1 also fails the 0.1 requirement.

slight noise in the dynamics (E.18), w̄x = 0.0125, due to the weight of the object. Our
goal is to estimate the unknown orientation, represented as three Euler angles {ϕi}3i=1,
using our observer (6), given 80x80 RGB images (Fig. 1.C) of the arm and grasped
object (see Fig. 1.C, inset); this makes y ∈ R19200. We may also plan motions for the
arm to improve the quality of the observations/state estimates, though in doing so, we
also need to counteract the dynamics error. Our overall goal is to guarantee our final
estimate of the relative orientation satisfies |ϕi(T)− ϕ̂i(T)| ≤ 0.1, i = 1, 2, 3.

We assume that the joint angles and velocities can be perfectly estimated (i.e., di-
rectly measured), given the accuracy of the Kuka joint encoders, focusing instead on
estimating the unknown {ϕi}3i=1 and controlling j and j̇ (the joint angles and veloci-
ties) using our method. We assume the object is rigidly attached to the gripper, such that
its relative orientation is constant over time. Combining {ϕi}3i=1 and the 14D model,
the full state of the system is 17D (E.17), i.e., x = [ϕ1, ϕ2, ϕ3, j1, . . . , j7, j̇1, . . . j̇7]

⊤.
To train ĥ−1, we note that {ϕi}3i=1 can all be estimated from the image. For this ex-
ample, since j is known and affects the generated y, we design ĥ−1 to take as input
y ∈ R19200 and j ∈ R7 (i.e., j plays the role of θ) and to output {ϕi}3i=1. We are given
Ndata = 62500 datapoints to train ĥ−1, where {ϕi}3i=1 are sampled uniformly from
[−π/3, π/3]3 and j is sampled uniformly from [−0.05, 0] × [0, 0.05] × [0.15, 0.32] ×
[−1.83,−1.69] × [−0.05, 0.05]2 × [−π/3, π/3]. We model ĥ−1 as a fully-connected
neural network, with five hidden layers of width 1024 and softplus activations. We
compute a constant CCM for the 14D subsystem: CCM synthesis for the full 17D sys-
tem fails, as the {ϕi}3i=1 are not controllable due to the rigid attachment. Since the
arm dynamics are linear, the CCM optimization simplifies to a standard semidefinite
program that can be quickly solved. We compute a constant OCM for the full 17D sys-
tem, to enable estimation of {ϕi}3i=1. Using the method of Sec. 4.3, we obtain a CCM
Mc with λ̄(Mc) = 100, λ(Mc) = 2.81, and λc = 2.89, and a constant OCM Me

with λ̄(We) = λ(We) = 0.1, and λe = 9.5. As the dynamics are linear, a constant
CCM/OCM holds globally, i.e., De = Dc = X . To update the tubes in CORRT, we
use ϵ̄2(x

∗, j), where we estimate Lp = 2.45. Since j and j̇ are known, no error arises

Safe Output Feedback Motion Planning from Images 15

from incorrect state estimates; thus, L∆k does not need to be estimated. We assume
d̄c(0) = 10−3, d̄e(0) = 0.32, and noiseless images ∥wy∥ = 0.

We plan 100 trajectories in D from various initial j, j̇, and orientation estimates,
taking 45 seconds on average. We summarize the error statistics in Table 1. Across
all trials, when planning with CORRT, x and x̂ always remain within the computed
tubes Ωc(t) and Ωe(t); the CCM keeps the tracking error very small, and the OCM
shrinks the error by a factor of > 18. Crucially, if a plan is found where Ωe(T) sat-
isfies the estimation accuracy threshold, we can ensure our true state estimate satisfies
|ϕi(T)− ϕ̂i(T)| ≤ 0.1, i = 1, 2, 3. We are able to find plans that achieve this threshold
for 100/100 trials. We compare with two baselines in this example: B1 (as described
before), and B3, which keeps the arm stationary and runs (6) for the same duration as
the plan computed using CORRT. The purpose of B3 is to show that the actions taken
by the CORRT plan help to reduce estimation error. In contrast to CORRT, B1 violates
its computed Ωe(t) in 44/100 trials and can fail to achieve the required estimation accu-
racy, only satisfying the 0.1 threshold in 79/100 trials (see Fig. 8). One failure example
is shown in Fig. 8.B: the arm moves too close to the camera (outside of Dr), causing the
duck to fall out of frame. This causes a sharp increase in ĥ−1 error, since ϕi cannot be
observed; this destabilizes (6), leading to a failure to satisfy the 0.1 threshold. Note that
B1 does not violate Ωc; this is because the controller is not a function of the incorrect
ϕi estimates. Similarly, B3 often fails to satisfy the 0.1-estimation accuracy threshold,
only satisfying it in 7/100 trials (see Fig. 8.A for a failure example). This shows that
passively estimating ϕi without moving the arm cannot achieve the needed estimation
accuracy; instead, the arm must be moved towards regions with smaller perception error.
Overall, this experiment suggests the applicability of our approach on high-dimensional
systems, that it can design actions that improve state estimates, and that our approach
can plan paths that guarantee a desired level of state estimation accuracy.

6 Discussion and Conclusion
We present a motion planning algorithm for control-affine systems that enables safe
tracking at runtime using an output feedback controller with image observations as
input. To achieve this, we learn a perception system and use it in an OCM and CCM-
based output feedback control loop. We derive tracking tubes for the closed-loop system
and use them within an RRT-based planner to compute plans that theoretically guarantee
safe goal-reaching at runtime. Our results empirically validate this safety guarantee,
and show that ignoring the effects of state estimation error and the local validity of the
perception system/estimator/controller can lead to unsafe behavior.

Our method has some weaknesses which reveal directions for future work. While
the large dataset S used to train ĥ−1 is easy to gather in simulation, sim-to-real is then
needed for ĥ−1 to transfer to the real world. Thus, in future work, we will combine
synthetic, domain-randomized perception data with a small real-world labeled dataset
to train generalizable perception modules that have calibrated estimates of the sim-to-
real error. Our method also assumes noiseless training data, to ensure Lp is finite; in
the future, we wish to relax this by investigating Lipschitz constant estimation methods
robust to input noise [4] . Another drawback is the conservativeness of using worst-
case disturbances; to mitigate this, we will integrate stochastic contraction [11] into
our method. Finally, we require θ to be known; in future work, we will aim to jointly
estimate θ and x with similar convergence guarantees.

16 G. Chou et al.

References
1. Agha-mohammadi, A., Chakravorty, S., Amato, N.: FIRM: sampling-based feedback

motion-planning under motion uncertainty and imperfect measurements. IJRR (2014)
2. Bahreinian, M., Mitjans, M., Tron, R.: Robust sample-based output-feedback path planning.

In: IROS. pp. 5780–5787. IEEE (2021)
3. Bonnabel, S., Slotine, J.E.: A contraction theory-based analysis of the stability of the deter-

ministic extended kalman filter. TAC 60(2), 565–569 (2015)
4. Calliess, J.: Conservative decision-making&inference in uncertain dynamical systems (2014)
5. Chou, G., Ozay, N., Berenson, D.: Model error propagation via learned contraction metrics

for safe feedback motion planning of unknown systems. CDC (2021)
6. Cosner, R., Singletary, A., Taylor, A., Molnár, T., Bouman, K., Ames, A.: Measurement-

robust control barrier functions: Certainty in safety with uncertainty in state. In: IROS (2021)
7. Dani, A.P., Chung, S., Hutchinson, S.: Observer design for stochastic nonlinear systems via

contraction-based incremental stability. TAC 60(3), 700–714 (2015)
8. Dawson, C., Lowenkamp, B., Goff, D., Fan, C.: Learning safe, generalizable perception-

based hybrid control with certificates. RA-L (2022)
9. Dean, S., Matni, N., Recht, B., Ye, V.: Robust guarantees for perception-based control. In:

L4DC. vol. 120, pp. 350–360. PMLR (2020)
10. Dean, S., Taylor, A.J., Cosner, R.K., Recht, B., Ames, A.D.: Guaranteeing safety of learned

perception modules via measurement-robust control barrier functions. In: CoRL (2020)
11. Kawano, Y., Hosoe, Y.: Contraction analysis of discrete-time stochastic systems (2021)
12. Kloss, A., Martius, G., Bohg, J.: How to train your differentiable filter. AURO (2021)
13. Knuth, C., Chou, G., Ozay, N., Berenson, D.: Planning with learned dynamics: Probabilistic

guarantees on safety and reachability via lipschitz constants. IEEE RA-L (2021)
14. Lakshiliikantham, V., Leela, S.: In: Differential and Integral Inequalities - Theory and Ap-

plications: Ordinary Differential Equations, vol. 55, pp. 3–44 (1969)
15. LaValle, S.: Planning algorithms. Cambridge university press (2006)
16. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion planning.

IJRR 36(8), 947–982 (2017)
17. Manchester, I.R., Slotine, J.E.: Output-feedback control of nonlinear systems using control

contraction metrics and convex optimization. In: Australian Control Conference (2014)
18. Manchester, I.R., Slotine, J.E.: Control contraction metrics: Convex and intrinsic criteria for

nonlinear feedback design. IEEE Trans. Autom. Control. 62(6), 3046–3053 (2017)
19. Manchester, I.R., Tang, J.Z., Slotine, J.E.: Unifying robot trajectory tracking with control

contraction metrics. In: ISRR. vol. 3, pp. 403–418. Springer (2015)
20. Maybeck, P.S.: Stochastics models, estimation, and control (1979)
21. Renganathan, V., Shames, I., Summers, T.H.: Towards integrated perception and motion

planning with distributionally robust risk constraints. IFAC World Congress (2020)
22. Singh, S., Landry, B., Majumdar, A., Slotine, J.E., Pavone, M.: Robust feedback motion

planning via contraction theory (2019)
23. Sun, D., Jha, S., Fan, C.: Learning certified control using contraction metric. CoRL (2020)
24. Sunberg, Z.N., Kochenderfer, M.J.: Online algorithms for pomdps with continuous state,

action, and observation spaces. In: ICAPS. pp. 259–263. AAAI Press (2018)
25. Tsukamoto, H., Chung, S.: Learning-based robust motion planning with guaranteed stability:

A contraction theory approach. RA-L 6(4), 6164–6171 (2021)
26. Tsukamoto, H., Chung, S.: Neural contraction metrics for robust estimation and control: A

convex optimization approach. IEEE CSL 5(1), 211–216 (2021)
27. Veer, S., Majumdar, A.: Probably approximately correct vision-based planning using motion

primitives. In: CoRL. vol. 155, pp. 1001–1014. PMLR (2020)
28. Weng, T.W., Zhang, H., Chen, P.Y., Yi, J., Su, D., Gao, Y., Hsieh, C.J., Daniel, L.: Evaluating

the robustness of neural networks: An extreme value theory approach. ICLR (2018)
29. Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registration. T-RO

37(2), 314–333 (2021)

