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Abstract. We present a novel method for extracting geometric and
topological features from a robot’s configuration space. To accomplish
this, we define a discrete Morse function on the Vietoris-Rips simplicial
complex to identify critical points on the surface of obstacles present.
These critical points serve as waypoints for determining feasible bounds
near an identified obstacle. This work builds on previous work that pro-
vides a method to approximate the number of samples required to gen-
erate pathways. Our results achieve near-optimal paths with a low com-
putation time and reduced path distance in this work. We conduct ex-
periments in different environments and with various robots, including
the Kuka YouBot and PR2 robots in simulation, and demonstrate the
performance gains compared to state-of-the-art methods.

Keywords: Discrete Morse theory, Geometric features, Vietoris-Rips
complexes.

1 Introduction

Motion planning which involves identifying feasible paths for a robot from a
start to a goal configuration is proven to be a PSPACE-hard problem. One of
the widely used motion planning methods is a sampling-based motion planning
approach [8], which attempts to approzimate the configuration space (Cspqce)
connectivity information with geometric properties embedded in the roadmap.
The roadmap generated by these planners does not describe the configuration
space information but only a subspace of it. Because the relationship of this sub-
space to the configuration space is largely unknown, the extracted information
of the underlying space becomes of little or no use for future analysis. Thus, it
requires investigation of new research directions to overcome these drawbacks.
Interestingly, the concurrent development of topological data analysis (TDA)
has yielded some encouraging results [5], [2]. In our preliminary work [30], we
used the Vietoris-Rips complex to obtain a homotopy-equivalent abstraction of
the configuration space’s topology. In this paper, we present a new framework for
extracting the geometric information of the cspace using discrete Morse theory.
The framework built on a pre-processing step that extracts free space (Cjree)
connectivity information using the Vietoris-Rips (VR) complex. It uses simpli-
cial collapse to remove redundant edges and vertices while preserving necessary
topological properties developed in [30] and stores them in a roadmap. Then, to
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extract the geometric features of the configuration space’s obstacles, we create
a specific function evaluated on the sample points and extend it to a discrete
Morse function on the VR complex that identifies critical points. We use these
critical points to locate samples near the obstacles (Copst). The resulting sample
set provides a small and efficient roadmap representation of samples surrounding
the Cops;- Finally, we combine this information with the extracted topological in-
formation to generate a space-specific sample roadmap that is memory-efficient.
We use this roadmap to successfully construct a path from the start to the
robot’s goal position with near-optimal properties.
The scientific contributions of our work to the configuration space include:

1. A near-optimal algorithm for planning good quality paths from the extracted
geometric representation.

2. An application of density-based discrete Morse function to the extracted
topological representation.

3. A re-usable roadmap with preserved topological and geometric information.

2 Related Work

Sampling-Based Motion Planning (SBMP) methods: Sampling-based methods
have been categorized into two main classes: graph-based methods such as the
Probabilistic Roadmap Method (PRM) [17] and tree-based methods such as
Rapidly-exploring Random Tree (RRT) [21]. Uniform sampling method [17] gen-
erates nodes uniformly at random in Cgpgce retaining valid ones but remains
inefficient in the presence of narrow passages. Obstacle-Based PRM (OBPRM)
[33] samples configurations near C,ps surfaces either by pushing configurations
to the Copst boundary or by finding surface intersections of randomly placed line
segments. While OBPRM excels in narrow passages, it can be expensive due to
the multiple collision detection checks. Gaussian [6] and Bridge-Test [15] filter
samples with inexpensive tests to find samples near C,,s; boundaries or directly
in narrow passages, respectively. However, both methods perform the same basic
sampling as uniform random sampling and suffer from requiring many samples
to find a valid path in a narrow passage. Additionally, both methods suffer from
parameter tuning, which can greatly affect the performance and quality of the
mappings produced. We use these auxiliary samplers to generate the topology
maps for our approach except OBPRM because it continuously failed to generate
a dense map to meet our stopping criteria from [30].

Topological Approaches to Motion Planning: Finding a safe and optimal path in
the presence of obstacles has been an important research topic in robot motion
planning. Many research has employed the advantage of mathematical tools to
improve the quality of paths by sampling-based planners. Work in [19] and [34]
combined the methods from computational geometry with SBMP to find paths
closer to the boundaries of the obstacles or at a medial-axis distance. More
interestingly, a rising application of Morse theory or its related tool, i.e., Reeb
graph, in works [26], [9], [25] and [24] showed promising results in finding safer
paths around the obstacles under integral/differential optimization. However,
their algorithms perform computationally-intensive calculations when dealing
with high-dimensional robots or complex environments. Our approach differs as
we apply discrete Morse theory, which covers all the trappings of Morse theory in
discrete form. Thus, making our algorithm more efficient in complex scenarios.
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Coverage Path Planning: Coverage path planning determines a route that guar-
antees an agent will pass over every point in a given environment. Research in
(23], [4], [2] and [1] proposed algorithms that applied brute-force technique or
an exact cellular decomposition to guarantee coverage in an unknown space for
different inspection purposes. The work in [3] used Unmanned Aerial Vehicle
(UAV) for coverage tasks and applied adaptive viewpoint sampling to construct
accurate 3D models of large complex structures. Surveys in [12] and [7] discussed
several coverage approaches that produced optimal coverage paths with mini-
mum length and low execution time resulting in low energy consumption for
UAVs and considered full or partial information about the area of interest. In
this work, we provide a roadmap which covers all sub-regions of the Cyyee, i.e.,
covers the entire Cy,.. with configurations at a safer distance from Copst.

3 Foundations

The section describes the theoretical foundation of our algorithm and defines
the relevant mathematical concepts.

Space approzimation using the Vietoris-Rips complex: In our previous work [30],
we applied two important mathematical concepts to perform a memory-efficient
path planning in a given Cypace On generating a homotopy-equivalent topological
map of the Cgyce.

Definition 1. (Abstract Simplicial complex) An abstract simplicial complex K
is a collection of subsets of a given set X closed under the subset operation.
It is a generalization of a graph representing higher-than-pairwise connectivity
relationships.

The elements of the set X are called vertices of K, and the subsets are called
the simplices of K.

Definition 2. (Vietoris-Rips complex) Given a set X of points in a Euclidean
space E, the Vietoris-Rips complex R.(X) is the abstract simplicial complex
whose k-simplices are the subsets of k 4+ 1 points in X of diameter at most €.

In this paper, we apply discrete Morse theory to the same simplicial complex to
identify critical points on the boundary of Co,ps:.

Critical simplex in discrete Morse theory: Discrete Morse theory, originally de-
fined by Forman [11], is a discrete analog of the classical smooth Morse theory. It
is used in applications like ours to simplify the topological information about the
space by decreasing the representation size without affecting the crucial prop-
erties such as the homotopy type. The context is either a simplicial or more
general cellular complex.

Consider the topologically non-trivial shape called the 2D torus as an obstacle
model in the free space of 3D Euclidean space (Fig. 1(a)). It is impossible to
embed the torus in the plane, but we can draw its triangulation by indicating
parts of the boundary glued together when the labels match.

Once a discrete Morse function is given, the theory provides the construction
of a consistent flow indicated with arrows (see Fig. 1(b)). There are several
critical cells of various dimensions here, but only one critical point d. As a
result, we see that the discrete flow identifies the critical simplices. When a
critical simplex is O-simplex, we refer to it as a critical point.
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Fig. 1: The figure shows the 2D torus model in (a) and an identified critical point
d in the planar triangulation of torus in (b).

Constructing a discrete Morse Function in Cspece: We adopt a discrete Morse
theoretic view to enumerate the critical points of Cops:. We define a density-
based discrete Morse function on the constructed simplicial complex to extract
the geometric property.

Definition 3. Let D(z) denote the distance between the point x € Crree and the
nearest point y on the closest obstacle O; € Copst, that is, D(x) = minyeco, || —

yll.

Definition 4. Let I'(y, 0) be a density function where o > 0 and y is the point
on the obstacle surface. Our choice of the function I' counts all neighbors in
R(X) C Cjree close to y within distance .

Our function is in fact defined at any point in Cgpace and is given by

f(z) = D(z) - I'(y,0)- (1)

Theorem 1. The restriction of f to the vertices of the Vietoris-Rips complex
is the restriction of a discrete Morse function defined on all of the complex
R(Cspace)- The critical points of this function identify features of the obstacles.

Proof. We start first arguing the second statement, then show how to obtain the
Morse function. Let w > 0. We consider any closest obstacle O from the robot
and the subset X = D~1([0,w]). We denote Hull(X,w) as the convex hull of
the set X at scale w from O, where ¢ and s are the random vertices/points that
define the elements in X. In other words,

Hull(X,w) = | J [t s]. (2)
t,seX

Taking the obstacle O, the local maxima and minima of the function f occurs
on the surface of the obstacle O. They will be critical points of f in 7 C O (as
objects are assumed to be polyhedral) when f — 0. The Hull(7) determines the
boundary of the obstacle surface containing these critical points. Let us take
point p € X. When D(p) = 0, that is w — 0, the distance between point p and
closest obstacle O becomes negligible. The density of neighboring points in Cyce
decreases on approaching closer to the obstacle O. However, the value of I'(y, o)
has a very meaningful limit. It is easy to see that the features on the surface of
the polyhedron O can be detected as critical points of f on the Hull(X,w). Thus,
we determine them as critical points which satisfy the following conditions,



A NEW APPLICATION OF DISCRETE MORSE THEORY 5

1. V points p € X; 3 point y € O such that f(p) < f(y),
2. V points y € O; 3 point p € X such that f(y) > f(p).

The identified critical point p will satisfy the equation
lim f(p) = D(p) - I'(y, w)- 3)

Figure 2 shows an example of identified critical point on the obstacle surface.

(b)

Fig.2: The figure shows the identified critical points on the boundaries of the
Cobst in (a) and the feasible critical points (as denoted by p) in Cyree closer to
the critical points at distance w in (b).

To apply discrete Morse theory to identify the critical points of f restricted to
Hull(X,w), we represent f given on the vertex set of the Vietoris-Rips complex
as the restriction of a discrete Morse function f defined on all of the complexes.
It is a well-studied problem in discrete Morse theory with many solutions. A very
well-known work [18] contains an algorithm called EXTRACT (see Algorithm 1
in loc.cit.). A more efficient version can be found in a recent improvement and
extension [14] (see Algorithm 2 called EXTRACTRIGHTCHILD).

4 Methodology

To extract the geometric information, we perform two associated steps. First,
we abstract the topological representation of the Cspqce using the VR complex.
Second, we apply the discrete Morse function to this representation. Here, we
describe implementation details to identify critical points and feasible critical
points information for our topology map.

4.1 Feasible Critical Points in Cspgce

Let @ = D~'([0, 0]) be the compact set of points in Cfre. at most distance p
from the obstacle boundary such that the computed ¢ value can be given as

0= %Z D(s); Vs € Hull(R(X)), (4)

where C' denotes the set of identified critical points, R(X) denotes simplicial
complex vertices set, n is the cardinality of set C' and D(s) = minyecc ||s — y||
from Def.3. The term clearance defines the offset distance of point p from the
obstacle boundary, thus shifting p away from Copst t0 Crree. We say p becomes a
feasible critical point with a maximum p-clearance from the obstacle boundary
if p € Cyree. An example is shown in Figure 2(b).
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For comparison, the Generalized Voronoi Diagram (GVD) provides a roadmap
to extract high-clearance paths. The GVD defines the maximum clearance for
a pathway from the C,pst, as utilized in the Medial-Axis PRM [32]. An exact
computation of the medial-axis distance is not practical for problems involving
many DOFs (degrees of freedom) and a cluttered environment with many ob-
stacles, as this requires an expensive and intricate calculation of the C,ps:. We
have proven in previous work that on reaching a needed sampling condition, the
Vietoris-Rips complex provides a topologically equivalent map of the space as
the Cech complex. After the simplicial collapse, the resulting simplicial complex
is a sparse sub-sampled graph that reconstructs the surfaces equivalent to the
Delaunay complex, similar to explained in [10]. Instead of computing the medial-
axis distance from C,ps; to the boundary of the Voronoi cell, we considered the
closest distance from each critical point to the convex hull of the simplicial com-
plex and took the average of all these distance values. In this work, we used the
computed mean value as the clearance distance from the Cops, i.€., 0.

4.2 Generating p-clearance samples in the Cspgee

Algorithm 1 provides a roadmap with configurations at a distance g from the
obstacle in the Cyy.ce, i.e., feasible critical points, by applying the discrete Morse
function f on the constructed VR complex S. The algorithm considers the convex
hull of invalid nodes set as the C,ps¢ boundary, returned by function GetObject-
ConvezHull(), and computes the Morse values of these nodes to identify the
potential critical points on the Cops surfaces, from equation (1). When the col-
lapses in VR complex S get close to the Cyps: boundary, the distance becomes
an equalizer making density the most important contributing factor. Thus, the
local minima and maxima of f depend on the lowest and highest density value
achieved by f at a point y € Cupst, in line 10. The algorithm inspects computed
Morse values (in line 11) to identify the critical points for each Cops; in line 12.
It captures the set of feasible critical points in S C C¢ree at clearance o from
the identified critical points, in lines 14-15. The greater the value of o decides
the maximum clearance of a configuration from a C,ps;. Finally, the algorithm
outputs a new graph Gy, having configurations in the Cc. at g-clearance from
the Copst and the set of identified critical points of Cyps in C'.

5 Experimental Setup

We perform experiments in simulation as a proof of concept of our methodology.
The experiments are executed on a Dell Optiplex 7040 desktop machine running
OpenSUSE operating system, and the code is developed in C++ language. We
used the brute force K-closest neighbor finding technique [22], the euclidean
distance metric, and a straight line local planner for sampling and connection
stages. We used the RAPID [13] collision detection method during the sampling,
connection, and query stages. The simulation experiments were performed in 5
different environments with robots ranging from 2 DOF to 14 DOF, as shown in
Figures 3 and 4. To ensure the accurate verification of our sampling condition,
we integrated the computation of the reachable boundary volume of the robot
as its environment boundary to meet the sampling condition. The computation
time taken for identifying critical and feasible critical points for these robots is
negligible, as empirically observed in section 6.
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Algorithm 1 g-clearance algorithm

Input: G: complete sampled graph from [30]; S: simplicial complex; O: Obstacle set,
D: distance function, I': density function, f: Morse values set function, g: value
from eq.(4), C: set of identified critical points, N: set of configurations around
identified critical points, Gf¢p: a graph of feasible critical points.

1: C «+ null, N + null;

2: G = GenerateGraph(); < Refer [30]

3: O = GetObjectConverHull(G);

4: S = CollapseComplex(G); < Refer [30]

5: if S is not empty then

6: for each obstacle 0; € O do

T for all sample z € S do

8: D(z) = minyeo,; ||z —y|| < Refer Def. 3
9: for all node y € 0; do

10: I'(y,0) =Ujju_y)j<o @ € G < Refer Def. 4
11 fy) = D(z)-I'(y,0)

12: if f'(y) — 0 then

13: C=Cuy

14:  for ally € C do

15: N=NUI(y,o0)

16: for each neighbor n € N do
17: chp < N[n]
18: return {Gy.p,C}

1. 2D environment: The 2D environment consists of a point robot with ran-
dom obstacles placed in the space, as shown in Figure 3a (referenced [16]).

2. Parking Garage: The 3D environment has a vehicle parking garage struc-
ture, as shown in Figure 4b. The robot is a planar car with 3 DOF.

3. Urban environment: This environment consists of buildings as obstacles
in the city-like structure, as shown in Figure 3b. The robot is a 6 DOF drone.

4. Kuka YouBot environment: The environment consists of a tree as an
obstacle and a fixed base Kuka YouBot in it, as shown in Figure 3c. This
robot is a simulation replica of Kuka YouBot [20] with an extended long arm
(10 DOF).

5. PR2 robot environment: The environment consists of two pillar blocks
placed on the table as obstacles where the robot is required to pass through
the blocks to grasp the stick kept on the other side, as shown in Figure
4a. The robot is a simulation replica of the PR2 robot [31] with only the
right-hand arm (14 DOF) and has a fixed base.

6 Results

In this section, we discuss the results obtained using different PRM sampling
strategies, i.e., Uniform [17], Gaussian [6] and Bridge-Test [15] planners, and
RRT methods in 3D environments. We compared the results with two topology
baseline RRT methods, Dynamic Domain RRT [34] and Dynamic Region-based
RRT [9]. We also show the performance of the RRT, RRT*, PRM, and PRM*



8 Aakriti Upadhyay et al.

(a) 2D environment (b) Urban environment (c) Kuka YouBot
(square) (drone) environment

Fig.3: The figure shows feasible critical points around the identified critical
points of the Cyps: for three environments. In (b), a point size view of the drone
is shown for better visualization of feasible critical points. In (c), we see the
feasible critical points of the robot are around the branches and bark of the tree.

b) Parking Garage (car)

(a) PR2 robot environment

Fig. 4: Environments Studied

methods in the 2D environment (used by Karaman et al., in [16]), and all result
values were averaged over 10 experiment runs in each case, i.e., evaluated total
500 trials for the 3D environments and 240 trials for the 2D environment. We
used bi-directional RRT methods in all environments.

6.1 Topology Map

Table 1 shows the statistical result values computed for each sampler in each
environment over ten runs. The column ”Total Nodes” represents the generated
density map nodes obtained on satisfying the sampling condition from [30]. In
7% Reduction,” we report the percentage of nodes removed after a simplicial
collapse, and in ”% FCP,” we report the percentage of feasible critical points
present in the topology map. The topology map contains both topological and
geometric information about the Cgpgce, and its nodes are listed in the column
”Extracted Nodes.” We highlight the sampling strategy for each environment
that preserved the topological and geometric information in their map with low
memory overhead and improved the performance of existing RRT and PRM
methods. Bridge-Test performed best in the narrow passage regions of the Park-
ing Garage and PR2 robot environments, while Uniform(PRM) performed best
in the open space region of the Kuka YouBot environment and Gaussian per-
formed best in the cluttered region of the Urban environment. Our approach,
like our previous machine learning method [27], revealed the core functionality of
these sampling strategies, resulting in improved performance. So, the extracted
properties of Cspqce aid in guiding the robot for memory-efficient path planning.
Figure 3 shows the captured feasible critical points for three of our environments.
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Table 1: STATISTICS OF EXTRACTED TOPOLOGICAL AND GEOMETRIC IN-
FORMATION

Environment Sampler [Total Nodes|% Reduction|% FCP[Extracted Nodes

Uniform 30000 40 20 18084

Parking Garage Gaussian 30000 32 15 20616
Bridge-Test 25000 44 12 14124

Uniform 10000 416 9 5455

Urban environment Gaussian 10000 41 12 5872
Bridge-Test 5000 34 20 3287
Uniform 15000 26 46 11040

Kuka YouBot environment| Gaussian 20000 27 47 14593
Bridge-Test 10000 28 42 7156

Uniform 20000 28 56 14466

PR2 robot environment Gaussian 5000 36 19 3222
Bridge-Test 2000 53 1 940

The survey in [12] concluded that when combined with topology methods,
SBMP methods provide promising results for optimal coverage path planning.
In this paper, we show how our approach combines the topological, i.e., the
homotopy equivalent map of the C¢,... space, and the geometric, i.e., the critical
points and configurations near the Cgpst, properties into a topology map. This
topology map contains enough nodes to cover all sub-regions of the Cy,... in the
Cspace- Our method has usefulness in determining a path that can pass through
all nodes in a given area or volume of interest while avoiding obstacles in coverage
path planning problems. This paper examines the quality of paths generated by a
topology map (& Cspace coverage map). Using our topology map, we demonstrate
the convergence of the RRT and PRM methods to the near-optimal solution, i.e.,
produce paths within feasible bound from C,s; using memory-efficient roadmap.

6.2 Comparison to RRT-based algorithms

As an initial roadmap, we input the topology map generated by the Uniform,
Gaussian, and Bridge-Test sampling strategies into the RRT method. Dynamic
Domain RRT was unable to find a path for the Parking Garage environment,
while Dynamic Region-based RRT was unable to find a pathway for the Urban
and Kuka YouBot environments. Both methods failed to complete in the PR2
robot environment. Our topology methods, on the other hand, finished planning
paths in all four environments.

Nodes and largest clique size: Figure 5 depicts the total number of nodes
in the roadmap as well as the size of the largest connected component (CC). The
number of nodes in the largest CC does not equal the total number of nodes in
the topology map, indicating that the number of nodes required to connect the
start and goal configuration is less than the total number of nodes in the topology
map. Dynamic Region-based RRT and Dynamic Domain RRT acquired all nodes
from their roadmap to establish a path. Thus, our methods require fewer nodes
than baseline methods to produce a pathway to the destination.

Query time and collision calls: Figure 6 depicts the total time required
to solve a query as well as the number of collision check calls made. The query
time accounts for topology map generation time, connection time, and path
planning time. The collision calls count the number of times nodes’ or edges’
are validated, and we examined their impact on the topology map’s path plan-
ning time. Compared to the baseline methods, our planners used fewer collision
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Fig.5: The figure shows the total number of nodes present in the roadmap in
the purple-green bar and the size of the largest connected component (CC) in
the purple bar for all environments. The size of the largest CC indicates the
number of nodes connected to establish a path from start to goal position by
RRT planners.

checks, resulting in less query time in all three environments. In the PR2 robot
environment, BridgeTopologyRRT outperformed other methods.

Path Quality: Table 2 depicts an improvement in path quality after employ-
ing topology maps. We discovered that BridgeTopologyRRT produced shorter
paths in Parking Garage and PR2 robot environments as explained in section
6.1. Similar observed for UniformTopologyRRT in the Kuka YouBot environ-
ment and GaussianTopologyRRT in the Urban environment. As a result, we can
conclude that our topology methods can produce shorter paths than baseline
methods, with less computation time and fewer nodes.

Table 2: Path cost achieved by different RRT planners

Methods Parking Garage[Urban[Kuka YouBot[PR2 robot
Uniform Topology RRT 311.10 173.08 14.03 2.09
Gaussian Topology RRT 367.78 164.37 16.61 2.27
Bridge Topology RRT 288.3 184.5 21.56 1.86
Dynamic Domain RRT N/A 167.15 23.39 N/A
Dynamic Region-based RRT 364.7 N/A N/A N/A

6.3 Comparison to PRM-based algorithms

As initial roadmaps, we input the PRM method with two different Cspgce cov-
erage maps: 1. a density map - nodes generated to provide complete coverage
of Cspace and 2. a topology map - nodes preserved from the density map after
the collapse and geometric feature extraction. We compare the performance of
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Fig.6: The figure shows the total query time and the number of collision calls
invoked for all RRT methods.

PRM with density map-based PRM and topology map-based PRM for all three
samplers in all four environments. In the plot labels, we indicated density map
methods with the prefix D’ and topology map methods with the prefix 'T.’

Nodes and largest clique size: In Figure 7, we noticed that our topology
map captured nodes in regions isolated from open free space, i.e., a space enclosed
by Copst- Given this, we can conclude that, regardless of the sampler method
used, our approach aided in capturing nodes close to C,ps¢, covering enclosed
sub-regions of C¢rce, in the same way, that an obstacle-based sampler captures
nodes close to Cgpse. Overall, we conclude that our topology map-based methods
required fewer nodes to plan paths in Parking Garage and PR2 environments
than other methods. In the Kuka YouBot and PR2 robot environments, however,
all nodes were connected to form one largest CC for all planners, as shown in
Figures 7c and 7d. Because the absence of enclosed regions in these environments
makes the planners use all nodes from their roadmap for the query analysis. After
400 hours of continuous running, the uniform sampling strategy failed to find a
path in the Parking Garage environment.

Query time and collision calls: Figure 8 shows that PRM took less time
to generate a path than density map-based PRM and topology map-based PRM
in Urban and Kuka YouBot environments for all three samplers. This difference
is due to the additional pre-processing time needed for topology or density map
generation. Topology map-based methods achieved fewer collision calls with the
shortest query time in complex environments such as Parking Garage (maze-
like structure) and PR2 robot environment (high DOF). As a result, we can
conclude that the computation time overhead for generating a topology map
becomes negligible for our approach when dealing with complex environments.
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Fig. 7: The figure shows the total number of nodes present in the roadmap and
the size of the largest connected component (CC) for all environments. The x-
axis labels with the prefix 'D’ indicate density map methods, and the prefix "T’
denotes the topology map methods for PRM planners.
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Fig.8: The figure shows the total query time and the number of collision calls

invoked for all PRM methods.

Path Quality: As shown in Table 3, topology map-based PRM methods
produced shorter paths than other methods. It also demonstrates that the pre-
served important nodes from the density map after the simplicial collapse and
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the feasible critical points information in the topology map were crucial in bring-
ing edges closer to Copst- As a result, the topology map’s path cost converges to
a near-optimal value much faster.

Table 3: Path cost achieved by different PRM planners

PRM Planners Parking Garage|Urban|[Kuka YouBot|[PR2 robot
Uniform DNF 2552.5 105.2 10
Uniform with density map 12027 2495.33 92 12
Uniform with topology map 11450.6 2420.1 85 4
Gaussian 14676.7 2493.4 104.6 12
Gausslan with density map 11668.75 2278.78 89 15
Gaussian with topology map 11540 2139.8 85 5
Bridge-Test 14252 2773.4 116.1 11
Bridge-Test with density map 11812 2377.33 92 16
Bridge-Test with topology map 11307.5 2377.4 89 3

6.4 Comparison with Existing Work in a 2D Environment

In this environment, we compare the performance of the different planners, i.e.,
RRT, RRT*, PRM, and PRM*, using our pre-processed maps with the results
from [16] to show the improvement in path quality as the sampling density
increases. The methods like RRT* and PRM* are proved to converge to an
optimal solution as the number of samples increases. We record the behavior of
these methods for our topology map to understand the difference in the result
from [16]. We performed experiments for sampling densities of 500, 1000, 2500,
5000, 10000, and 15000. We did not sample beyond 15000 nodes because the
Hausdorff distance does not change after reaching the lowest constant value, the
reason explained in [30]. We analyzed the behavior using the uniform sampling
strategy density map and topology map.

Path Cost and Time: In Figure 9a, we observe that as the number of
samples increases, the path cost decreases and reaches a minimum cost value for
the density map. On the other hand, the methods were able to show a similar
pattern with a decrease in path cost using our topology map, and, as the sam-
pling condition gets fulfilled at the last sampling density, the path cost attains
a minimum value at an earlier stage. In Figure 9c, we observe that the methods
take less time to make connections between the nodes and fewer collision calls
using our topology map than the density map. We observe a similar trend for
PRM and PRM* methods in Figures 9b and 9d. Thus, the methods showed an
early convergence to the optimal solution using our topology map. We conclude
that via our topology map, we achieve paths with near-optimal properties at a
faster convergence rate compared to results from [16].

7 Discussion

Discrete Morse theory is a recent development in topology that has resulted in
an explosion of applications in a wide range of fields. This paper is an example
of such a robotics application. Discrete Morse theory should not be confused
with discretized smooth Morse theory because it is a genuinely combinatorial
subject and thus amenable to efficient computer implementations. As defined,
it is a theory that has all of the trappings of smooth Morse theory and, so, can
be used in place of the smooth theory. The benefits are enormous. It is purely
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Fig.9: Plots showing performance of RRT, RRT*, PRM, and PRM* in the 2D

environment compared with our approach for Path cost vs. Number of Nodes in
(a) and (b), and Time taken vs. Number of Nodes in (c¢) and (d).

a discrete theory, that is, applied directly to simplicial or more general cellular
complexes. The ability to generate discrete functions from samples, such as the
density-based function, which is unavailable in a smooth context, is one of the
many additional applications that can be particularly useful for our work. We
demonstrated two important practical applications of the critical point informa-
tion retrieved using our density-based discrete Morse function in diverse path
planning [28] and computational biology [29]. The former solved a more com-
pelling problem of finding diverse paths in high dimensional space with different
homotopy classes. The generated roadmap’s coarsely-diverse pathways were de-
fined using critical point information. This roadmap aided in overcoming the
computational overhead of recalculating a new path if the previous route failed
due to the unexpected placement of a new obstacle. Thus, showing promising
applications in self-driving car initiatives. The latter provided an understanding
of protein-ligand interactions, which is critical in the study of drug design with
potential life-saving biological implications, such as assisting in the development
of therapeutic drugs, vaccines, and point-of-care technologies.

8 Conclusion

The work presented an algorithm that implements discrete Morse theory to iden-
tify critical points on the boundaries of C,ps¢ using the Vietoris-Rips simplicial
complex. We created a topology map of the Cgpqce that approximates Cyr .. with
configurations near Cgpst, i.€., captures topological and geometric information.
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Using our topology map, we found that methods such as PRM and RRT improve
planning time and path cost. In a 2D environment, the performance of RRT,
RRT*, PRM, and PRM* methods demonstrated convergence to near-optimal
paths in less time. The future work will transition the pre-processing step of
generating the topology map of the entire Cspqce to incremental path planning
steps. The incremental planner will generate local topology maps of sub-space
while simultaneously planning local paths to connect to a global pathway. We
also intend to put our technique to the test in a dynamic and uncertain environ-
ment. Although several research works have investigated the use of Morse theory
in path planning problems, little attention is devoted to testing its application
in a dynamic environment incorporating uncertainty in path planning methods.
Thus, this remains an open question for future research.
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