Nondeterminism subject to output commitment
in combinatorial filters

Yulin Zhang! and Dylan A. Shell® *

! The University of Texas at Austin, Austin TX 78712, USA
2 Texas A&M University, College Station TX 77843, USA

yulin@cs.utexas.edu dshell@tamu.edu

Abstract. We study a class of filters—discrete finite-state transition
systems employed as incremental stream transducers— that have appli-
cation to robotics: e.g., to model combinatorial estimators and also as
concise encodings of feedback plans/policies. The present paper examines
their minimization problem under some new assumptions. Compared to
strictly deterministic filters, allowing nondeterminism supplies opportu-
nities for compression via re-use of states. But this paper suggests that
the classic automata-theoretic concept of nondeterminism, though it af-
fords said opportunities for reduction in state complexity, is problematic
in many robotics settings. Instead, we argue for a new constrained type of
nondeterminism that preserves input—output behavior for circumstances
when, as for robots, causation forbids ‘rewinding’ of the world. We iden-
tify problem instances where compression under this constrained form of
nondeterminism results in improvements over all deterministic filters. In
this new setting, we examine computational complexity questions for the
problem of reducing the state complexity of some given input filter. A
hardness result for general deterministic input filters is presented, as well
as for checking specific, narrower requirements, and some special cases.
These results show that this class of nondeterminism gives problems of
the same complexity class as classical nondeterminism, and the narrower
questions help give a more nuanced understanding of the source of this
complexity.

Keywords: Discrete filters - State space reduction - Nondeterminism

1 Introduction

Going right back to Rabin and Scott’s seminal paper [4], classic automata the-
ory has considered a particular type of nondeterminism that declares a string
accepted if some tracing of it reaches a final state. Under this definition, as that
paper first established, such nondeterministic finite automata express the same
languages as their deterministic brethren, viz. precisely the regular ones. But it
is well known that nondeterminism can, nevertheless, confer practical benefits:
nondeterminism permits expression of some languages with far greater concision.

* This work was supported by the NSF through awards 11S-1849249 and 11S-2034097.

https://nsf.gov/awardsearch/showAward?AWD_ID=1849249
https://nsf.gov/awardsearch/showAward?AWD_ID=2034097

2 Y. Zhang, D. A. Shell

These facts have bearing on a line of robotics research looking at finite-state
encodings of combinatorial estimators, discrete feedback plans and stateful poli-
cies. Employing the terminology of Tovar et al. [11], we shall refer to discrete
transition systems that process a stream of observations as ‘filters’. In their pa-
per, they demonstrate how ascertaining the amount of information required to
answer particular queries may involve surprising subtlety. Among their illustra-
tive examples of filters, their most elegant instances track all that is needed
via curiously few states. More generally, as representations, discrete filters can
help direct attention to considerations of minimalism [1], drawing into sharp
focus questions of necessity rather than of mere sufficiency. Beside elucidating
interesting structure —a consideration of obvious scientific value— they also have
practical application in building simpler, cheaper devices.

A series of papers has explored filter compression: proposing algorithms for
reducing the number of states needed [13,6,12], and examining the hardness of
achieving the minimal filter under differing assumptions [3,8,14,9]. An initial sug-
gestion that the problem might simply be identical to automata minimization
was shown to be false [3]. And thoughts that filter minimization could be accom-
plished by quotienting under a bisimulation relation turns out also to be false [5]
and, indeed, no equivalence relation will do [13]. Even though automata theory
suggests that nondeterminism may afford opportunities for added compression,
no algorithm for compressing filters currently exploits nondeterminism.

Insofar as nondeterminism does figure in prior work on filters, there are two
forms. The first is tracing nondeterminism wherein any vertex may have multiple
departing arcs that match some symbol being processed. This type of nondeter-
minism corresponds with the concept in classical automata, and the informal
intuitions that are usual there, apply here as well. So, when there are two edges
that match, we might speak of ‘taking both’; or, upon reaching such a juncture,
we might pick one but later change our mind and rewind to choose another. The
imaginary processes that these two narrations provide as interpretations, despite
being distinct, agree in terms of the language they characterize.

In filters there is a second form, output nondeterminism, where any vertex
may bear multiple outputs. On arriving at a vertex with several outputs, any of
these may be selected. Both types of filter nondeterminism were first explored
together in [7], which investigated their relationship under a model that examines
how sensor imperfections lead to loss of functionality. Looking specifically at
minimization of filters, output nondeterminism is formulated and studied in our
paper at the previous WAFR [13]. Recently, [14] added tracing nondeterminism
to the minimization picture, showing that tracing nondeterminism does allow
further compression. (In other words, the ‘opportunities’ mentioned in the earlier
paragraph do exist in filters.)

The present paper highlights why tracing nondeterminism may not always
be appropriate in robotics applications. It then defines a new class of nonde-
terminism on the basis of this observation. This class represents a juste milieu:
permitting choices in tracing while still encoding deterministic input—output be-
havior. We then see whether this class affords additional compression over the

Nondeterminism subject to output commitment in combinatorial filters 3

strictly deterministic case (spoiler: it does). Thereafter, Sections 4-5 examine
the relation of this class, in terms of hardness of minimization, to others and
draws connections with results from automata theory.

2 Basic definitions
Having reached the limits of informal talk, some definitions follow next.

Definition 1 (procrustean filter [7]). A procrustean filter, p-filter or filter
for short, is a 6-tuple F = (V,V, Y, 7,C, ¢) in which V is a non-empty finite set
of states, Vj is the set of initial states, Y is the set of observations, T7:V xV —
Q(Y) is the transition function, C is the set of outputs, and c: V — 9(C)\ {2}
is the output function. (Here, $(A) denotes the powerset of set A.)

For some F, we will write V(F), Vo(F) and Y (F), for its sets of states, initial
states, and observations, respectively. We'll present filters visually as graphs,
with states as vertices and transitions as directed edges with observations. We
shall assume that Y (F) is finite (it affords some simplicity and will suffice for
our needs here, though cf. [7]). To be consistent with automata theory, we also
call Y(F) the alphabet of F. The outputs will appear visually as colors at each
vertex, going some way to explain the names C and ¢(+). We say that F is vertex
single-output, if every vertex v in F has |c¢(v)| = 1. Otherwise, it is vertex multi-
output, a term rather less vague than the phrase ‘output nondeterminism’ used
in the preceding section.

For some filter F = (V, V4, Y, 7,C, ¢), an observation sequence (or a string)
S = y1Y2...yn € Y™, and states v,w € V, we say that w is reached by s (or
s reaches w) when traced from v, if some sequence of states wg,ws, ..., w, in
F, such that wy = v, w, = w, and Vi € {1,2,...,n},y; € 7(w;—1,w;). The set
of all states reached by s from a state v in F will be denoted Vg (v, s), and we
will use V#(s) for all states reached by s from any initial state of the filter, i.e.,
Vi (s) = Uypev, V7 (v0, 8). If Vs (v, 5) is empty, then we say that string s crashes
in &F starting from v. Otherwise, we say that s is an extension of v in F. The
set of all extensions of v in F is denoted as Ly(v) = {s € Y*|V5(v,s) # &}.
Specifically, the set of all strings that are extensions of any initial state in F is
called the interaction language (or, briefly, just language) of F, and is written
as L(F) = Uysevy) La(vo). Contrariwise, the set of strings reaching w from
some initial state in F is denoted as SJ = {s € Y*|w € Vy(s)}. Without loss
of generality and to help dispose of turgid statements of conditions, we shall
assume that every state in F can be reached by some string from an initial state.
Otherwise, we may remove this state from F with no impact on the language of
F or outputs for strings in the language.

Although quite standard, the following is paramount, so justifies emphasis:

Definition 2 (tracing-deterministic). A filter F = (V, 1y, Y, 7, C, ¢) is tracing-
deterministic or state-determined, if |Vy| = 1, and for every vi,ve,vs € V with
vz # vz, T(v1,v2) N T(v1,v3) = .

4 Y. Zhang, D. A. Shell

We shall say that a filter which is not tracing-deterministic is tracing-non-
deterministic. Examples of tracing-deterministic and tracing-nondeterministic
filters appear in Figure 1b and la.

Next, we define the crucial concept of functional substitutability, giving con-
ditions when one filter may serve as a replacement for another.

Definition 3 (output simulating [3]). Let F and F' be two filters, then F'
output simulates & if (1). L(F) C L(F') and (2). C(F',s) C C(F,s).

For convenience, we refer to property (1) and (2) as language inclusion and
output compatibility, respectively. The intuition is that language inclusion ensures
that ' is able to process any input that ¥ can. When the output that F produces
could be some output produced by JF, then it is considered compatible.

The three vertex single-output filters in Figure 1 provide a basic feel for the
concept; shortly we shall consider vertex multi-output instances too.

The core optimization question is one of reducing state complexity in a filter:

Problem: Filter Minimization (FMm)

Input: A filter F.
Output: A filter F© with fewest states, such that ' output simulates F.

The decision version of FM provides some k € N and asks if any T with no
more than k states can output simulate . We shall consider variations on this
problem under different constraints (to be detailed in Section 3.3).

OwaICyO 0‘~beCyO mbcx Z/O
start — start — N
OO0~ ~O+0 ~O+0+-0
(a) (b) (c)
Fig. 1: Three simple vertex single-output filters: (a) a tracing-nondeterministic
filter; (b) a tracing-deterministic one that output simulates the filter in (a) when
the dashed z-edge and yellow-state are absent; and (c) another one that output
simulates (a), now with the dashed edge/state, or without, and also (b) as well.

start —!

3 Some examples leading to our key definition

Starting from an important problem instance, this section builds up to Defini-
tion 4, the central definition of the paper.

3.1 An interesting filter and two of its minimizers

Consider Figure 2. It shows an example of a tracing-nondeterministic and vertex
multi-output filter, F,p. It has the form of a tree, and hence has a finite language.
When processing strings beginning with {a, b, ¢, d, e}, the tracing leads to what
we’ll term the lower-half; strings starting with {f, g, ..., ¢} lead to the upper-half.

Nondeterminism subject to output commitment in combinatorial filters 5

Q@ Q0000000

= \ [

Fig.2: A filter JFi,p with
Y (Finp) = {a,b,c,... k l}
that is tracing-deterministic
and vertex multi-output.
Tracing string ‘ac’ may pro-
duce either purple or teal
start as an output. (The dashed

a-edges/vertices should be

\%2\5 y%} %D\ % R ignored at first; they will be

O O O d CS b { O 6 4 W O introduced when the discus-

sion re-visits the example.)

)
)
a~

Figure 3 gives a tracing-deterministic vertex single-output filter, Fgo;, that
output simulates JFinp. In the upper-half, all the pink states have been merged
together, and the same has occurred with the light-blue ones. For the lower-
half, single colors have been chosen for the multi-output vertices (picking purple
and yellow) and then possible mergers made. In fact, Fget is a minimal tracing-
deterministic filter that output simulates Fi,p:

Lemma 1. The Fyer of Figure 3 is a minimal tracing-deterministic filter that
output simulates Finp.

Proof. The proof appears in the supplementary material. O

Now examine Figure 4, which gives J,q, a filter that output simulates Fiyp
and is smaller than Fye¢. It is a tracing-nondeterministic vertex single-output
filter. It was constructed as follows. In the upper-half, pink and light-blue ex-
tensions of strings with final symbol {a,b,...,h} have been separated and re-
constituted in only 6 gray vertices. The lower-half has exploited the fact that
some strings have multiple valid outputs (like ‘ac’ giving teal or purple); us-
ing this freedom allows sharing of some vertices. And this F,q is the minimal
tracing-nondeterministic filter that output simulates Fi,p.

Lemma 2. F4 is a minimal tracing-nondeterministic filter that output simu-
lates Finp.

Proof. The proof appears in the supplementary material. O

Fig.3: A filter Fqe; that
is tracing-deterministic and
vertex single-output. It out-
put simulates JFi,, and is a
solution to the FM problem
in the sense that no other
tracing-deterministic filter
with fewer vertices output
simulates Ji,,. The reduc-
tion is from |V(Finp)| = 36
to |V (Faer)| = 23.

6 Y. Zhang, D. A. Shell

Fig.4: A filter F,q that is
tracing-nondeterministic and
vertex single-output, and
which output simulates Finyp,.
It solves Problem FM in the

start

0, QY Cd e

sense that no other (filter
with fewer wvertices output R /CD\ /CD\ R

simulates Fup. [V(Fna) =21 @) @ @ @ @ O O O

3.2 Processing inputs incrementally and string single-output filters

Thus far, filters have been discussed almost as though they were entirely abstract
objects. When employed in practice, their output (an element from set C, which
we’ve shown visually through colors) is grounded to some specific meaning. It
may have an interpretation as a sufficient statistic for some estimation task, or
as an answer to a particular query, or it may be an action to have the robot
execute. Figure 5 provides an example of a feedback plan for a manipulation
problem (re-drawn from [3], itself inspired from [10]
and work in this line). The outputs describe how the

system should operate: orange and green map to ac- [hresioid Sepkd Return' =0~
tions to execute (specific motions for a gripper), and
white indicates that the system should terminate as
the task has been completed successfully.

We envision a controller for the robot being rep-
resented internally via a encoding of this filter, which 01
is then used to process sensor observations and gener- .—89 N
ate actions. It does this incrementally. For instance, in MH@ ©
Figure 5, the controller simply has to track the current
vertex to know what to have the robot do. Minimiz-
ing the filter has the advantage, then, of reducing the
controller’s memory footprint. So now consider what
happens when, in light the previous examples of supe-
rior reduction via nondeterminism, the minimized fil-
ter exhibits some nondeterminism. Suppose something
simple like the 6-state filter in Figure 1b is obtained
as a result.

For the filter in Figure 1b, when the robot obtains, & S¢duence of squeeze-
first, an ‘a’, it has a choice from the initial white ver- gf'nnppor. and rotate-by-
tex. It might make the arbitrary decision to take the (15\ gctlons. (Based on
lower-branch. If the sensor provides it an ‘x’ next, it [3, Figs. 14 and 15].)
would proceed to the orange state. Then, if a ‘y’ is obtained (possible, since ‘axy’
is in the input language and so some output should be produced) it has then be-
come clear that the initial choice could’ve been better made if the upper-branch
were taken. (And introducing the dashed z-edge and yellow-state shows that,
though in the basic setup the upper-branch has a superset of the strings of the

Threshold Sensor Return = 1

Diameter

Threshold

o
ol

Orientation

Fig.5: A small feed-
back plan for a pla-
nar manipulation prob-
lem expessesd as a fil-
ter. Using 0 or 1 read-
ings from a threshold
sensor, it orients the 4-
sided part shown via

Nondeterminism subject to output commitment in combinatorial filters 7

lower-branch, there needn’t be a choice that covers the other options.) In order
to resolve this missing y, the filter effectively needs to rewind back to the ‘a’ and
take a different edge. Such an approach is undesirable because it requires the
controller store the (unbounded) history of readings, and the filter is no longer
operating in an efficient incremental manner.

One solution is to trace forward on all matching edges: so in Figure 1b,
after ‘a’, some markers keep the position on both upper- and lower-branches.
Then, when a ‘y’ arrives, though one trace dies off, the second can proceed. This
requires a number of markers, but they are bounded in the size of the filter. One
question, when one has multiple vertices that are currently reached (so both blue
and red after ‘a’ in Figure 1b), is which output should be chosen? This motivates
the following definition, wherein we are spared the burden of making a choice:

Definition 4 (string single-output). A filter F = (V,V,,Y,7,C,¢) is string
single-output if Vs € L(F), |C(F, s)| = 1; Otherwise, call it string multi-output.

Immediate remark: Any tracing-deterministic vertex single-output filter will
be a string single-output filter.

In the discussion earlier, we made the case that the rewinding interpreta-
tion for tracing-nondeterminism is undesirable from a practical point of view.
But notice how Definition 4 comes into play also under that interpretation: for
a general tracing-nondeterministic filter, when a string is rewound and traced
forward anew, it might generate a different sequence of output colors. Returning
to our concrete example in Figure 1b, following the symbol ‘y’ being encoun-
tered on the lower-branch, after rewinding and tracing ‘a’ forward a second time
on the upper-branch now, the color blue is associated with the string. If this
filter is encoding a plan, then blue corresponds to an action; but it is not ap-
propriate to generate that action —that represents a point in the past—as the
action for red was already executed, with sensor reading ‘z’ being produced
thereafter. Had both branches produced the same outputs (that is, been string
single-output), then even if the robot decided to store the sequence of input sym-
bols and rewind to process the string forward, avoiding crashing, and reaching
a vertex from which to resume tracing at the newest symbol, this would be a
purely internal affair. The actions generated in the world would be consistent
with the ones actually executed earlier in time.

Is the class of string single-output filters useful? We can answer in the af-
firmative. Suppose one wishes to minimize a filter, but maintain the sort of
temporal /causal consistency just described. Then one may seek a string single-
output minimizer and, indeed, there exist such filters that are smaller than any
deterministic filter. Returning to example filter Fj,, of Figure 2, now examine
Fsso presented in Figure 6. It is tracing-nondeterministic but is string single-
output, and it has one fewer vertex than Fge;. Further, this particular filter Fgq,
is a string single-output minimizer of Fjyp.

Lemma 3. Jy, is a string single-output minimizer of Finp.

Proof. Proof appears in the supplementary material. O

8 Y. Zhang, D. A. Shell

Fig.6: A filter F that
is tracing-nondeterministic
and vertex single-output,
and which output simulates
Finp- It solves FM in the
sense that no other string

- . l - - single-output filter with
M <o 5)\ fewer vertices output simu-
O @ O ¢ Q Q Q O lates Finp. [V(Fsso)| = 22.

One additional point worth noting is that F,q has a language which is larger
than that of Finp. Both Fqe¢ and Fgso match the input language exactly. Specif-
ically, F,q will process strings ‘da’ and ‘ea’, and assign them outputs. These
show up as a sort of aliasing in the compression down to 4 royal-blue vertices.
It would be erroneous to believe that this is necessary for the gap in minimizer
sizes. If one adds the dashed gray a-edges to Figures 2, 3, and 6, then all have
precisely the same language.

3.3 Classes of minimizer

The three filters Fyet, Fsso, and Fnq are all minimizers of Fj,, within their
respective classes. The class of tracing-nondeterministic filters, by definition,
omits the constraint that forces determinism, and thus contains all the tracing-
deterministic ones as well. As already remarked, the class of string single-output
filters includes all the tracing-deterministic ones. And tracing-nondeterministic
filters may well violate the string single-output constraint. So, as solutions to
the problem of minimization, tracing-deterministic ones can be no smaller than
tracing-nondeterministic or string single-output ones; and string single-output
ones may be no smaller than tracing-nondeterministic ones. Of course, for a
particular problem, there might be a size gap the other way, but there needn’t
always be. (Consider, for instance, Figure 1b; it is its own nondeterministic
minimizer, but is also the deterministic minimizer as well.) The three Fyet, Fsso,
and J,q show a separation in their sizes for the single input of Fiyp.

This motivating discussion now concluded, we will always be explicit in what
follows about the class of minimizer sought when studying a variant of FM. Fur-
ther, we will also clarify in assumptions on the input filter. We shall abbreviate:

FM(DF-DF): where both the input and output filter are tracing-deterministic
(DF), e.g. Fet-

FM(DF-»8S0): where the input filter is tracing-deterministic (DF), and the output
filter must be string single-output (SS0), e.g. Fsso O Fsso plus dashed a-edges.

FM(DF-»SMO): where the input filter is tracing-deterministic (DF), and the out-
put filter can be tracing-nondeterministic (SMO), e.g. Fpnq.

3.4 Aside: single- and multi-output vertices

One observation is that Fge; and Fq are vertex single-output filters. Indeed, no
minimizer need have ever multi-output vertices itself.

Nondeterminism subject to output commitment in combinatorial filters 9

Lemma 4. If &, is a vertex multi-output filter that output simulates F, then
there exists some F as an output simulator of F, where F is vertex single-output

and, moreover, |V (Fn,)| = [V (Fs)].

Proof. Any vertex in JF,, with multiple outputs can have a single one selected
arbitrarily to yield Fs. Then F, output simulates F,,, and hence J too. O

Multi-output vertices allow expression of some flexibility in the Y to C map-
ping. As already apparent in Figure 2 in the lead-up to Figures 3, 4, and 6,
multi-output vertices can be helpful for expressing some input to a minimiza-
tion problem, specifically in providing a specification which grants a degree of
freedom. (Both [13] and [12], in their respective introductory sections, have de-
tailed robotics scenarios in which there is a degree of freedom which is natural,
and is cleanly expressed via multi-output vertices.)

The preceding helps emphasize that one use of filters is as specifications of
the appropriate range of system responses for a given input. This is a distinct use
from their adoption directly as the object that computes outputs, incrementally,
from inputs as and when they arrive.

3.5 The role of output simulation and consistency across sequences

Let’s revisit the topics arising in the discussion directly following Definition 4, but
now from a point of view that puts aside considerations of specific edge/vertex
structure. Any filter F that is string single-output, when interpreted as an input—
output map on sequences, i.e., from L(F) C Y* to C*, is deterministic. That
is, it is a function. Though the filter may be tracing-nondeterministic, any of
those branching choices are purely internal to it, and any observer treating it as
a black-box is shielded from those decisions.

For some given filter G, its string single-output minimizer must produce, for
each string, some output compatible with that produced on §. Language inclu-
sion ensures that the minimizer can process every string that filter § can, and
all filters process a prefix-closed collection of strings. But it is important to note
that Definition 3 does not place any additional requirement on the relationship
between the outputs produced for a string and those produced by its prefixes.
Or, when thinking of the filter as a function on sequences: if sequence s maps
to t, then a subsequence of s need not map to a subsequence of ¢. Put differently:
it is a mapping from £(F) C Y* to C not to C*, and when one naturally uses the
prefix closure property to interpret it as lifted to sequences of C', something extra
appears, seemingly. This extra is not in the requirements for output simulation.

Specifically, no ‘tracing correlations’ need be preserved. To make this con-
crete, see in Figure la how on string ‘ez’ only blue followed by green, or red
followed by orange, can be produced. Output simulation permits any filter that
produces either red or blue on ‘a’, and green or orange on ‘az’. This freedom (four
cases rather than only two) may be necessary for behavior to be implementable
incrementally. Using our example: after adding in the z-edge/yellow-vertex, Fig-
ure lc gives a tracing-deterministic output simulator that does not preserve the

10 Y. Zhang, D. A. Shell

red—orange—yellow output ordering; but no tracing-deterministic output simula-
tor exists that can preserve the output orderings produced by both ‘azy’ and
‘axz’ strings.

In the very next section, this will not be a concern for a much simpler reason:
when we consider the hardness of forms of minimization to string single-output
filters compared to other cases (i.e., the FM(DF+SSO) problem wvs. FM(DF-DF)
and FM(DF-SMO)), we shall assume we are given a tracing-deterministic input.
(Without this restriction, minimization can only become harder—a fact we use
in Section 5) And the process of converting some general filter into a tracing-
deterministic input (e.g. [7, Algorithm 2]|) removes the tracing dependent output
orderings.

4 Hardness of FM(DF>DF), FM(DF-»$S0), and FM(DF+SMO)

Having seen the gap between the minimizers of FM(DF-DF), FM(DF-Ss0O) and
FM(DF-SMO), we now examine the computational complexity of minimization.

4.1 Complexity of FM(DF-DF), FM(DF»>Ss0), and FM(DF>SMO)

In this section, we will give worst-case complexity analyses for the 3 problems.
Prior work has proved the hardness results for FM(DF-DF) by reducing from
a graph coloring problem:

Theorem 1 (Theorem 9 [13]). FM(DF-DF) is NP-complete.

Next, we will leverage the existing results to show that both FM(DF->SMO)
and FM(DF-Ss0) are PSPACE-complete.

Prior results in tracing-nondeterministic filter minimization show that to
check whether one tracing-nondeterministic filter output simulates another is in
PSPACE.

Lemma 5 (Lemma 7 [14]). Given a tracing-nondeterministic filter ¥ and a
tracing-nondeterministic filter F', it is in PSPACE to check whether F' output
simulates F.

In both FM(DF-»SMO) and FM(DF-SS0), the input filter is tracing-deterministic,
which is a special case in Lemma 5. Hence, it is also PSPACE to check output
simulation for FM(DF-SMO) and FM(DF-»$S0). Accordingly, we have the PSPACE
results for FM(DF»SMO) immediately:

Lemma 6 (FM(DF-SMO) is in PSPACE). Given a tracing-deterministic filter
F and a tracing-nondeterministic filter F', it is in PSPACE to check whether F'
output simulates F.

But for FM(DF-+sS0), we additionally need to check whether the output filter
is string single-output, and are required to show whether this procedure is in
PSPACE as well.

To facilitate the proof for FM(DF-Ss0), we use the following graph product:

Nondeterminism subject to output commitment in combinatorial filters 11

Definition 5 (product graph). Given filters F and F', all the strings that are
in both F and F' are produced by their tensor product graph G, denoted as G =
FRF'. G has initial states Vo(F) x Vo(F'), and for every string s € L(F)NL(F'),
(v,0") € V(G, s).

Using the above operator, we show that FM(DF-SS0) is also in PSPACE:

Lemma 7 (FM(DF-Ss0) is in PSPACE). Given a determinsitic filter ¥ and
an non-determinsitic filter F', it is in PSPACE to check whether ¥ is string
single-output, and F' output simulates F or not is in PSPACE.

Proof. Following Lemma 5, it is in PSPACE to check whether the output sim-
ulating condition holds for FM(DF+$S0O). Next, we will show that it also takes
polynomial space to check whether F' is string single-output or not. First, if
there is a state v’ in F’ that has more than a single output, i.e., |e(v')| > 1, then
the strings in Sgl have more than one output, and F’ is not string single-output.
Otherwise, we build a product with itself § = F ® F’ to vet states that are
reached by the same string. According to the construction, there are at most
|V (F")|? states in G. Additionally, every pair of states that are nondeterminis-
tically reached by the same string in F’ will appear as a state in §. And every
state in § consists of two states that are reached by some string in F’. Hence, the
states in G capture all pairs of states that are non-deterministically reached. For
every string s in ¥, let V! = V(F,s) be the set of states non-deterministically
reached by s. Then we know that s has precisely one output if and only if every
pair of states in V/ share the same output mutually. Therefore, we can say F' is
/ !

string single-output, if for every state (vj,v}) in G, c(v;) = c(v}). Otherwise, it

is not. So we have a polynomial space procedure. O

Next, we will examine the hardness results for both FM(DF-ss0) and FM(DF-
SMO) via some other results from automata theory. Similar to a filter, an au-
tomaton A is defined as a tuple (Vp,V, X, 7, F'), where X' is the alphabet, F' is
the set of final states. Different from the filter, the language of an automaton
is called the accepting language, denoted henceforth as £4(A), which is the set
of strings that reach the final states. But the difference between £4(-) and just
L(+) disappears when all states in the automaton are final. Automata in which
F =V are called ASF automata (where ‘ASF’ stands for ‘All States Final’).

A prior result for ASF automata shows that it is PSPACE-complete to check
whether an ASF NFA with alphabet Y has accepting language X* or not:

Lemma 8 (NFA-NONUNIVERSALITY-ASF [2]). Given an ASF NFA A with
alphabet X, if |X| > 2, it is PSPACE-complete to check whether LA(A) = X*
holds or not.

Then we will show that both FM(DF+$s0) and FM(DF-SMO) are PSPACE-hard
by reducing from NFA-NONUNIVERSALITY-ASF.

Lemma 9 (FM(DF-ss0) and FM(DF-»SMO) are PSPACE-hard). Given a
tracing-deterministic filter F and an string single-output tracing-nondeterministic
filter &, if |Y(F)| = 2 and |Y(F')| > 2, it is PSPACE-hard to check whether F'
output simulates F or not.

12 Y. Zhang, D. A. Shell

Proof. Proof by reduction from NFA-NONUNIVERSALITY-ASF. Given an ASF
NFA A with alphabet X' and |X] > 2, then treat A as a filter ' with an
output function that colors every state the same color ¢y. Then the interaction
language of filter F’ is the same as the accepting language of automata A, i.e.,
L(F") = LA(A). Next, create a tracing-deterministic filter F, where there is
only a single state with a self-loop bearing . This state is colored ¢y. Then
L(F) = X*. Therefore, LA(A) = X* <= L(F) C L(F). Hence, to check NFA-
NONUNIVERSALITY-ASF, i.e., whether £4(A) = £* holds or not, is equivalent
to checking L(F) C L£(F’). Additionally, for every string s in JF, the output
from F is the same as that from F’. Hence, £L(F) C L(F’) if and only if F’
output simulates F. Therefore, NFA-NONUNIVERSALITY-ASF has been reduced
to FM(DF-»SS0) in polynomial time, and FM(DF-Ss0) is PSPACE-hard. The same
reduction also shows that FM(DF-SMO) is PSPACE-hard. O

Note that this reduction requires the input to have a non-unitary alphabet, so
as to be general enough to model the NFA-NONUNIVERSALITY-ASF problem.

Theorem 2. Both FM(DF-»SSO) and FM(DF+SMO) are PSPACE-complete.

Proof. Combine Lemma 7 and Lemma 9. O

4.2 Minimization problems with a unitary alphabet

Lemma 9 indicates that when the alphabet comprises 2 or more symbols, both
FM(DF-SS0) and FM(DF-SMO) are PSPACE-hard. We examine hardness results
for unitary alphabet versions of the problems.

With a unitary alphabet, the tracing-deterministic filter has either a finite
chain of states, or a finite chain with a cycle attached at the end of the chain.
In such cases, which we write as FM(DF41~DF) can be solved efficiently:

Theorem 3 (FM(DFy;-DF) is in P). Given a tracing-deterministic input filter
F with |Y (F)| = 1 (unitary alphabet Y = {y}), then finding the minimal tracing-
deterministic filter that output simulates F is in P.

Proof. We prove the hardness by giving a polynomial algorithm. First, there is
always a tracing-deterministic minimizer that also has a unitary alphabet. Given
some minimizer that is otherwise, simply remove the labels that are not in Y
and the edges accordingly. Since the minimizer is tracing-deterministic with a
unitary alphabet, it can either be (1) a finite chain of states (for finite language),
or (2) a finite chain with a cycle (for Y*). For any type-(1) minimizer, we can
add a self-loop bearing label y at the leaf node, obtaining a type-(2) minimizer,
being no larger while also output simulating the input filter. Thus, the tracing-
deterministic minimizer can be parameterized as a type-(2) filter, i.e.,a finite
chain with & states and a cycle with m states, where k € N and m € N>°. Since
the F output simulates itself, the minimizer can be no larger. Let n = |V(F)].
Then, with k£ € {0,1,...,n} and m € {1,2,...,n} we can enumerate the O(n?)
potential tracing-deterministic minimizers candidates. For each filter F1, it takes

Nondeterminism subject to output commitment in combinatorial filters 13

polynomial time to check whether FT output simulates F or not: First, denote
the initial state from F and Ft as vy and vg respectively. Then check whether
¢(vo) 2 ¢(vl) or not. If not output simulation of F' is violated. Otherwise, move
on to check their y-children. If the state from F has a y-child but the state
from F1 does not, then violation (owing to failure of language inclusion) has
been detected. Once all F’s y-children have been checked, output simulation is
satisfied. It is, thus, in P to find the tracing-deterministic minimizer for &. O

Next, we will show that the tracing-nondeterministic minimizer for a tracing-
deterministic input filter with unitary alphabet is tracing-deterministic, and it
can be found in polynomial time as well:

Theorem 4 (FM(DFy4;-SS0) and FM(DFy+SMO) are in P). Given a tracing-
deterministic input filter F with |Y(F)| = 1 (unitary alphabet Y = {y}), then it
is P to find the minimal tracing-nondeterministic filter that output simulates F.

Proof Sketch. One shows (see Appendix for details) that this reduces to the case
in Theorem 3. O

So far, no difference has manifested in the hardness of finding string single-
output ws. general tracing-nondeterministic minimizers. The general cases are
both intractable, and the special unitary cases, both efficient. The next section
tries to probe this difference.

5 Differences between string single-output minimization
and general tracing-nondeterministic minimization

In order to better understand whether there is any complexity difference between
string single-output and general tracing-nondeterministic minimizers, we next
consider input filters that may also include tracing-nondeterministic ones. The
previous results apply to both equally because they leverage the first requirement
of output simulation, namely language inclusion. The second requirement, output
compatibility, relates to the colors generated, so seems more likely to be where a
difference, if any exists, might be pinpointed. Thus, for this more general class of
inputs, we lay open the monolithic definition of output simulating, examining the
component strands, i.e., both requirements separately. As we show, language in-
clusions for both string single-output and general tracing-nondeterministic min-
imization is PSPACE-hard, but they differ in the difficulty of checking output
compatibility. Output compatibility for general tracing-nondeterministic min-
imizers is PSPACE-hard to check, but it only takes polynomial time to check
output compatibility for string single-output tracing-nondeterministic ones.

The naming convention used in the problems before is now extended: SSO+SSO
indicates both the input and output filter are string single-output and potentially
tracing-nondeterministic (ss0), while SMO-SMO means both input and output
filters are tracing-nondeterministic (SMO).

Following the results from the previous section, it is PSPACE-hard to check
language inclusion for FM(SS0-SSO) or FM(SMO-SMO):

14 Y. Zhang, D. A. Shell

Lemma 10. Given a string single-output tracing-nondeterministic filter & and
F', it is PSPACE-hard to check whether L(F) C L(F') holds or not.

Proof. This has been proved by the reduction presented as Lemma 9. O

A difference does show up in checking outputs: the string single-output prop-
erty means output compatibility for SS0+SsO can be checked efficiently:

Lemma 11 (output compatibility for sso-sso is in P). Given a tracing-
nondeterministic filter ¥ and a non-deterministic filter ¥ such that L(F) C
L(F"), then checking output compatibility: Vs € L(F),C(F,s) D C(F,s) is in P.

Proof. We will give a polynomial time procedure to check whether this property
holds or not. First, construct a tensor product graph § = F® F'. Next, for every
state v/ in F’, collect the set of states in F that are paired with it in G, and
call it R,y = {v € V(F)|(v,v") € V(9)}. Ry can be constructed in polynomial
time. Then R, contains the set of all states from F that are reached by some
string that reaches v’ in &’. If there is no string from F that reaches v’ in &, i.e.,
SE/ N L(F) = @, then R, = &. Since both F and F’ are string single-output,
they are also vertex single-output. For each v’, if the output of v’ is the same
as that of every state in R,/, then it satisfies the output simulation criterion.
Otherwise, if there exists a state v € R, such that ¢(v) # ¢(v’), then it violates
output simulation, since SJ N Sﬁl have output that is incompatible. Therefore,
we only need to check whether the output of every state paired with v’ in G is
the same as that of v’, which can be done in polynomial time. O

However, without input filter being string single-output, checking output
compatibility is PSPACE-hard:

Lemma 12 (output compatibility for sMo-sMo0 is PSPACE-hard). Given
a tracing-nondeterministic input filter F and a tracing-nondeterministic filter F'
such that L(F) C L(F'), then it is PSPACE-hard to check the output compatibility:
Vs € L(F),C(F,s) DC(F,s).

Proof. Viareduction from language inclusion, which is shown to be PSPACE-hard
in Lemma 10. Given non-deterministic filters A and B such that £L(A) C L(B),
to check the property of output compatibility, we first construct a product graph
between A and B, denoted as J = A& B. Then we construct a graph union with
d and A, calling it G, consisting of vertices and edges from both J and A. Hence,
we have £(G) = L(A). Next, treat G as a filter F by coloring the vertices from
J green, and vertices from A red. Treat A as a filter F’ with all states green.
Then, we have L(F') = L(A) = L(9) = L(F). If L(A) C L(B), then for every
string s € L(A), s will reach a red state (from A) and a green state (from J) in
F. Hence C(F,s) = {red, green}. Since Vs € L(F), C(F',s) = {green}, we have
that F and F' are output compatible. If L(A) € L(B), then there exists a string
s such that s € L(A) but s & L(B). Hence, s will only reach red states (from A)
in F. Since s reaches green states in F’, then it violates the output compatibility
property. Therefore, the problem of checking language inclusion was reduced in

Nondeterminism subject to output commitment in combinatorial filters 15

polynomial time to the problem of checking output compatibility. So the problem

is PSPACE-hard as well. O
F T Correspondance between
‘ states in .% and F’ . . .
D : (@ Fig.7: An illustration
a ab.c that develops intu-
’ 20:{2),3} ition for the hard-

a,b
3 :{4,5,6) ness of checking out-
C:/ b,c b a,b,c /S 5 ‘H\ put compatibility for
@ @ @ @ aa,ba ab,ac ab SMO-SMO.

bb,bc

The difference in hardness for checking output compatibility between ssO-
SsO and SMO-SMO can be seen intuitively. As illustrated via Figure 7: a tracing-
nondeterministic input filter F is shown at the left, and an output filter F is
shown in the middle. For every state v' in &', we have collected the set of states
R, in F that are reached by the strings reaching v’, exactly as in the procedure
in Lemma 11. For every v’, its corresponding set R, is shown at the right of
Figure 7. As illustrated in Lemma 11, if F is string single-output, then we only
need to check the output of every individual state inside each R, for v'. We assert
a violation of output compatibility if there is a state whose output is different
from that of v’. But if F is not string single-output, we cannot immediately claim
that a failure was found when an output inconsistency is found between state
v € R, and v’ because the strings SJ N Sg/ may non-deterministically reach
other states that share the same output as v’. An example is shown in Figure 7,
for vertex 3/, Ry = {4,5,6}. Vertex 6 outputs pink, while 3’ outputs green.
So there is an inconsistency. But the strings ‘ab’ reaching 6 and 3, also reach
a green state nondeterministically. In this case, C(F',ab) C C(F, ab) still holds.
Therefore, when F is not string single-output, one must check the output across
all the states that are nondeterministically reached in F, which is PSPACE-hard.

Speaking informally, given that checking language inclusion is at least as hard
as either of the output compatibility checks, one expects to pay at least that price
for determining output simulation. Lemma 11 suggests that price must be paid
twice for SMO-»SMO, in the sense that there are two instances of this problem
embedded in corroborating output simulation. While for sso-»sso the language
inclusion check seems to dominate. We note that the conditions on the last two
lemmas may have some relevance in applications, for instance, when one has
domain knowledge (or an oracle) that tells you language inclusion holds.

6 Summary and Conclusion

This paper explores a new type of nondeterminism that is novel in the context
of combinatorial filtering. It has attractive properties when used, for instance,
in encoding feedback plans/policies concisely: First, the outputs that such filters
produce are consistent, isolating specific tracing choices (or rewinding opera-
tions) made during processing from being manifested externally. As mappings,

16 Y. Zhang, D. A. Shell

they exhibit deterministic behavior. Secondly, they provide degrees of freedom
absent from deterministic filters, which facilitate greater compression. It is curi-
ous that this should actually be possible, but our example demonstrates a clear
separation in sizes between the classes. To initiate study of the class of string
single-output filters, we have examined hardness of size minimization, establish-
ing that the general problems are of the same complexity class as classical non-
determinism. String single-output filter minimization is PSPACE-hard in terms of
the language inclusion for output simulation, and not output compatibility; gen-
eral nondeterministic filter minimization, it turns out, is PSPACE-hard in terms
of both the properties—a fact never noted before.

References

1. Connell, J.H.: Minimalist mobile robotics: a colony-style architecture for an artifi-
cial creature, Perspectives in Al, vol. 5. Academic Press, Inc. (1990)

2. Kao, J.Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial,
or both. Theoretical Computer Science 410(47-49), 5010-5021 (2009)

3. O’Kane, J.M., Shell, D.A.: Concise planning and filtering: hardness and algorithms.
IEEE Trans. on Automation Science and Engineering 14(4), 1666-1681 (Oct 2017)

4. Rabin, M.O., Scott, D.: Finite Automata and Their Decision Problems. IBM Jour-
nal of Research and Development 3(2), 114-125 (1959)

5. Rahmani, H., O’Kane, J.M.: On the relationship between bisimulation and com-
binatorial filter reduction. In: Proceedings of IEEE International Conference on
Robotics and Automation. pp. 7314-7321. Brisbane, Australia (2018)

6. Rahmani, H., O’Kane, J.M.: Integer linear programming formulations of the filter
partitioning minimization problem. Journal of Combinatorial Optimization 40,
431-453 (2020)

7. Saberifar, F.Z., Ghasemlou, S., O’Kane, J.M., Shell, D.A.: Set-labelled filters and
sensor transformations. In: Robotics: Science and Systems. Ann Arbor, MI (2016)

8. Saberifar, F.Z., Mohades, A., Razzazi, M., O’Kane, J.M.: Combinatorial filter re-
duction: Special cases, approximation, and fixed-parameter tractability. Journal of
Computer and System Sciences 85, 74-92 (2017)

9. Saberifar, F.Z., O’Kane, J.M., Shell, D.A.: Inconsequential improprieties: Filter
reduction in probabilistic worlds. In: Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and System. Vancouver, Canada (2017)

10. Taylor, R.H., Mason, M.T., Goldberg, K.Y.: Sensor-based manipulation planning
as a game with nature. In: International Symposium on Robotics Research (1988)

11. Tovar, B., Cohen, F., Bobadilla, L., Czarnowski, J., Lavalle, S.M.: Combinatorial
filters: Sensor beams, obstacles, and possible paths. ACM Transactions on Sensor
Networks 10(3), 1-32 (2014)

12. Zhang, Y., Rahmani, H., Shell, D.A., O’Kane, J.M.: Accelerating combinatorial
filter reduction through constraints. In: Proceedings of IEEE International Con-
ference on Robotics and Automation. pp. 9703-9709 (May 2021)

13. Zhang, Y., Shell, D.A.: Cover combinatorial filters and their minimization problem.
In: Algorithmic Foundations of Robotics XIV. pp. 90-106. Springer (2021)

14. Zhang, Y., Shell, D.A.: On nondeterminism in combinatorial filters. In: Proceed-
ings of IEEE International Conference on Robotics and Automation. (To appear).
Philadelphia, PA, USA (2022), available at https://arxiv.org/abs/2107.07111

https://arxiv.org/abs/2107.07111

	Nondeterminism subject to output commitment in combinatorial filters

