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Abstract. When deploying machine learning models in high-stakes ro-
botics applications, the ability to detect unsafe situations is crucial. Early
warning systems can provide alerts when an unsafe situation is imminent
(in the absence of corrective action). To reliably improve safety, these
warning systems should have a provable false negative rate; i.e. of the
situations that are unsafe, fewer than ✏ will occur without an alert. In
this work, we present a framework that combines a statistical inference
technique known as conformal prediction with a simulator of robot/envi-
ronment dynamics, in order to tune warning systems to provably achieve
an ✏ false negative rate using as few as 1/✏ data points. We apply our
framework to a driver warning system and a robotic grasping applica-
tion, and empirically demonstrate guaranteed false negative rate while
also observing low false detection (positive) rate.

Keywords: Safety assurance · Conformal prediction · Statistical infer-
ence

1 Introduction

Monitoring a system for faults, or detecting if unsafe situations will occur is a
key problem for high-stakes robotics applications, and indeed the field of fault
detection has long been the state of practice for building reliable systems [30, 29,
31, 28, 16, 21, 7, 8, 23, 13, 14]. With the advent of learning-enabled components in
robotic systems, robots are performing increasingly complex safety-critical tasks,
so reliability has become increasingly important. At the same time, it is less clear
how to ensure reliability for these learned systems.

In this work, we present a sample efficient and principled method for detect-
ing unsafe situations based on the statistical inference technique of conformal
prediction [32]. Our method provides provable false negative rates for warning
systems (i.e. among the situations in which an alert should be issued, fewer than
✏ occur without an alert), while achieving low false positive rates (few unnec-
essary alerts are issued). As a running example, we use our method to design
?
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an alert system to warn a human operator of impending danger in a driving
application (illustrated in Figure 1).

Dataset with        points

Trajectory Simulator

Alert Message (         )

Fig. 1: We design a warning system that achieves a provable false negative rate sample
efficiently. Among the situations that are dangerous (i.e. lead to an unsafe future situ-
ation in the absence of corrective action), fewer than ✏ occur without an alert.

Related Work Traditional fault detection techniques include hardware re-
dundancy, signal processing, and plausibility tests [8, 30, 29, 31, 28]. However,
hardware redundancy requires extra components, signal processing works well
only for processes in steady state, and plausibility tests do not catch faults that
lead to a physically plausible system. Additionally, these methods typically lack
performance guarantees. Model-based fault detection techniques [8, 23, 13, 14] in-
volve using a model of the system to determine whether a fault has occurred;
they assume that users have a very accurate model of the system dynamics,
which is difficult to obtain in practice.

Another common approach for detecting unsafe states employs supervised
learning to train a classifier model for labeling states as unsafe, and then the
classifier hyperparameters are adjusted until empirically the false negative rate
is low. In practice this is typically accomplished by plotting a receiver operating
characteristic (ROC) curve and tuning the classification threshold to achieve low
false negative rate. However, this approach requires training a new classification
model, and provides no performance guarantees.

To guarantee the false negative rate of a learned warning system, the stan-
dard statistical learning framework could be used under standard i.i.d. assump-
tions [17]. A practitioner could collect additional data and use a validation
dataset to provably certify the false negative rate. However, the key problem
is data efficiency, because collecting data for unsafe situations can be very ex-
pensive [11, 17, 4].

Main Question Can we tune a warning system and guarantee low false
negative rate with only a handful of data points? For example, with only 30
data samples of dangerous situations, can we tune a warning system to have
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provable 5% false negative rate? This problem is easy if we allow trivial systems
that always issue a warning, but such systems are not practically useful. If we
restrict our attention to non-trivial systems, this problem is seemingly impossible
because even if a fixed warning system successfully identifies all 30 dangerous
situations, due to statistical fluctuations, we cannot prove that its false negative
rate is less than 5% (with high confidence). If proving that a fixed predictor
achieves safety is difficult, tuning a predictor to provably achieve safety seems
only more challenging.

Our Contribution We answer our main question affirmatively. We adapt
a statistical inference framework known as conformal prediction to a robotics
setting in order to tune systems to achieve provable safety guarantees (e.g. 5%
false negative rate) with extremely limited data (e.g. 30 samples). We only re-
quire a single assumption: the training samples are exchangeable with each test
sample, i.e. for each test sample, if we permute the concatenated sequence of
the training samples and the test sample, there is no reason to believe that any
permutation is more or less likely to occur. This is a weaker assumption than
the i.i.d. assumption typically used in the statistical learning framework.

The assumption is reasonable in practice, even in situations in which the
statistical inference assumptions fail (e.g. situations with temporal correlations
between different test samples). In a driving scenario, for instance, the training
dataset could include scene snippets sampled from different scenes, and these will
be i.i.d. At test time, there may be one scene with several snippets. These snip-
pets are obviously not independent; however, they are individually exchangeable
with the training dataset.

While this answer seems too good to be true, the key insight here is that we
provide a type of guarantee that is different from standard statistical learning
guarantees. Consider a sequence of test samples Z1, · · · , ZN , and event indicators
F1, · · · , FN for whether our warning system fails on each test sample.

– Statistical learning guarantee. In the statistical learning framework, we
assume that the test samples Z1, · · · , ZN are i.i.d., so the failure events
F1, · · · , FN are also i.i.d. — we guarantee the failure probability for a se-
quence of i.i.d. failure events.

– Conformal prediction guarantee. In the conformal prediction frame-
work, the test samples are not necessarily i.i.d., so the failure events F1, · · · ,
FN can be correlated — we guarantee the marginal failure probability for
each failure event. In other words, we know that each test sample has a
low probability of failure (i.e. Fn = 1 with low probability), but the failures
could be correlated. For example, conditioning on Fn = 1 might increase or
decrease the probability that Fn+1 = 1 (while in the i.i.d. case, Fn and Fn+1

are independent events).

The usefulness of the conformal guarantee depends on the intended applica-
tion. Consider the driver alert system example: for individual drivers, collisions
are rare and most drivers will not encounter more than one. Hence, there is lit-
tle reason to worry about whether the warning failures are correlated between
collisions. In other words, the conformal guarantee can convey confidence to
individual users who rarely encounter multiple failures.
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On the other hand, the conformal guarantee may convey less confidence to
a company with a large fleet of vehicles. For example, if Fn = 1 increases the
probability that Fn+1 = 1, then it is possible to have multiple simultaneous fail-
ures. However, this is not a limitation of our method, but rather an unavoidable
consequence of the weaker (not i.i.d.) assumptions: if the test data is correlated
(which we have no control over), then failure events of a warning system are
inherently correlated. The weaker assumption is usually necessary because most
robotics applications are deployed in time series or sequential decision making
setups, so data from nearby time steps are correlated and not i.i.d. Since stan-
dard statistical learning guarantees are not applicable due to violation of the
i.i.d. assumption, having some (conformal) guarantee is better than none.

Furthermore, we will show empirically in Section 4 that failures are not highly
correlated on two real-world driving datasets. Therefore, despite the lack of for-
mal guarantees, there is strong empirical evidence suggesting that simultaneous
failures do not occur in practice.

Thus, our contribution is four-fold: 1) We introduce a new notion of safety
guarantee that is satisfactory for many use cases and has extremely good sample
efficiency. 2) We show how to leverage the statistical inference tool of conformal
prediction for robotics applications. 3) We instantiate a framework for applying
conformal prediction to robotic safety. 4) We validate our framework experimen-
tally on both a driver alert safety system and a robotic grasping system, showing
that the conformal guarantees hold in practice, without issuing too many false
positive alerts (e.g. less than 1% for many setups).

Organization The rest of this paper is organized as follows. In Section 2,
we review conformal prediction. In Section 3, we describe our problem setup,
introduce our framework, and demonstrate that specific choices for elements of
our framework lead to instantiations such as tuning an ROC curve threshold to
limit false negatives (though we enrich this classic method with new guarantees).
We then explain the differences between the conformal prediction guarantees and
the statistical learning guarantees, and discuss when our guarantees should be
applied. Finally, in Sections 4 and 5, we evaluate our framework on a driver alert
safety system and on a robotic grasping system.

2 Overview of Conformal Prediction

This section provides an overview of conformal prediction, the general framework
that we adapt for robotics safety. It may be skipped without breaking the flow
of the paper.

Consider a prediction problem where the input feature is denoted by X and
the label is denoted by Z. Conformal prediction [26] is a class of methods that can
produce prediction sets (i.e. a set of labels), such that the true label belongs to the
predicted set with high probability. In its standard form, conformal prediction
requires two components: a sequence of validation data (X1, Z1), · · · , (XT , ZT )
and a non-conformity score  , which is any function from the input feature X

and the label Z to a real number. Intuitively, the non-conformity score should
measure the “unusualness” of the label Z when the input feature is X. An ex-
ample non-conformity score is  (X,Z) = |h(X) � Z| where h is some fixed
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prediction function — intuitively, Z is “unusual” if the prediction function has
large error.

The conformal prediction algorithm computes the non-conformity score for
all samples in the validation set. Given a new test example with input feature
X̂, the conformal prediction algorithm then “tries” all possible labels z, and
measures the non-conformity score  (X̂, z). A label is rejected if the computed
non-conformity score is greater than 1 � ✏ of the non-conformity scores in the
validation set. Any label that is not rejected is included in the prediction set.
Intuitively, the true label is unlikely to have a non-conformity score higher than
1� ✏ of validation samples; hence the true label is unlikely to get rejected.

If the training data and the new test data point (X̂, Ẑ) are exchangeable, i.e.
the probability of observing any permutation of (X1, Z1), · · · , (XT , ZT ), (X̂, Ẑ)
is equally likely, then conformal prediction has very strong validity guarantees:
the true label will be within the prediction set with 1� ✏±1/(T +1) probability.
We note that this guarantee holds regardless of the nonconformity function  .

There are many extensions of conformal prediction, and the most relevant
extension to our safety application is Mondrian conformal prediction [33, 32],
which partitions the input data into several categories such that each data point
belongs to exactly one category, and guarantees validity separately for each cat-
egory. Our work is based on Mondrian conformal prediction; because we wish
to limit the false negative rate in warning systems, we need class-conditional
validity for samples in the “unsafe” class.

Works that apply conformal prediction to robotics settings include [5, 3, 22,
12]. [5] uses conformal prediction to predict a set of possible future motion
trajectories from out of a set of 17 basis trajectories, [3] uses some ideas from
conformal prediction for detecting out of distribution samples in cyber-physical
systems, and [22, 12] use conformal prediction for medical diagnosis. However,
these works consider very different targeted problems, while we consider the
problem of warning systems and provide a general framework for using conformal
prediction on a variety of robotics applications.

3 Conformal Prediction Framework for Robotics

Applications

3.1 Problem Setup

We consider a model-based planning application where we have some existing
simulator or model, and given the current observations (denoted by random
variable X), the simulator or model predicts the future states of the system
(denoted by Y ) in the absence of a warning. For instance, many applications
have off-the-shelf simulators: an autonomous driving software might simulate
the future trajectories of all traffic participants (up to some time horizon), or
an aircraft control software might forward simulate the dynamics of the aircraft.
We will use the random variable Z to denote the true unknown future states of
the system in the absence of a warning, e.g. the true future trajectories of traffic
participants, or the true future dynamics of an aircraft.

In our setup, depending on the model or simulator available, Y could have
the same type as Z (e.g. both Y and Z are random variables that represent the
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future trajectories of traffic participants), or Y could have a different type from
Z (e.g. Y might represent some but not all aspects about the future, such as the
direction of movement for traffic participants, or the distance from collision).

Assessing Safety We assume that if we know the true future state of the
system Z, we can assess whether it is safe or not. Specifically, there exists some
safety score denoted by f(Z); we specify some threshold (denoted by f0), and
wish to be alerted if the safety score drops below this threshold (i.e. if f(Z) < f0).
Most applications have natural safety scores. For instance, an autonomous driv-
ing safety score f could be the distance to or time from collision; an aircraft
control safety score could be the (negative) absolute difference between the ori-
entation of the aircraft and its ideal orientation.

In addition, we assume that the user provides a surrogate safety score

g : Y 7! R that maps from the simulator prediction to a “safety score,” where
a higher score indicates “safe” and a lower score indicates “unsafe”. Ideally the
surrogate safety score g(Y ) should be highly correlated with the true safety
score f(Z), but technically g can be any function. None of our technical results
depend on any assumptions about g; however, the choice of g affects the empirical
performance in terms of false positive rate (i.e. how often our warning system
issues unnecessary alerts). When Y and Z have the same type, we can simply
choose g := f ; when Y and Z have different types we need to choose g on a
case-by-case basis.

Warning Function We wish to design a warning function (denoted as a
function w(Y )) that given the simulation or model output Y , decides to issue a
warning (w(Y ) = 1) or not (w(Y ) = 0). Note that Y depends on previous states,
so the warning function implicitly depends on previous observations through Y .
Formally we define “safety” as the following requirement:

Definition 1. For some 0 < ✏ < 1, we say that the warning system w is ✏-safe
(with respect to Y, Z, f , and f0) if

Pr[w(Y ) = 1 | f(Z) < f0] � 1� ✏.

In words, whenever the true future safety score f(Z) is below f0, the warning
system should issue a warning (w(Y ) = 1) with at least 1�✏ probability. Another
way to think of this is that the false negative rate is at most ✏. The main difficulty
here is that the warning function w can depend on only the simulated future Y

rather than the true future Z (which is not yet observed when the warning is
issued), and the simulation might not come with any performance guarantees.

A trivial warning system that always issues a warning (i.e. wtrivial(Y ) ⌘ 1)
is always ✏-safe for any ✏ > 0. However, such a warning system is not useful.
A useful warning system should issue as few warnings as possible when safe.
Therefore, we should also consider its false positive rate

FPR(w) = Pr[w(Y ) = 1 | f(Z) � f0].

The false positive rate is of lower priority for safety because issuing an unnec-
essary warning might only be an inconvenience, while failing to issue a warning
when the situation is unsafe can lead to catastrophic outcomes. In summary, our
goal is to design a warning function w(·) such that:
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Goal: Provably achieve ✏-safety for small ✏ (e.g. 0.02), while achieving low
false positive rate (FPR).

Examples A few examples that illustrate this problem setup are as follows:
(1) In a driver alert system, users may want an assurance that among the in-
stances in which the driver is in a dangerous situation, the system will issue a
warning the vast majority of the time. The safety score in this case could be
the time to collision (TTC), or the nearest distance from another car. (2) In a
multi-arm robot collaboration system, users may want an assurance that among
the instances in which the robot arms may collide, the system will issue a warn-
ing the majority of the time. The safety score could be the nearest distance to
another robot arm. (3) In a warehouse robotic box-stacking system, users may
want an assurance that among the instances in which the boxes will topple, the
system will issue a warning the majority of the time. The safety score could be
the probability of a stable stack.

Example 3 can be thought of as ROC curve threshold tuning. If the model
used is a binary classifier that predicts whether there is a stable stack, we can
use the predicted probability as g. Note that in this special case, our method also
tunes the threshold, but adds guarantees on the false negative rate and practical
guidelines for sample complexity.

3.2 Analysis of the Trade-off Between the FNR and FPR

In this section, we analyze the fundamental trade-off between the false negative
rate (FNR) and the false positive rate (FPR) of a warning system. For example,
a trivial system that always issues a warning will have a 0% FNR but 100%
FPR. Conversely, a system that never issues a warning will have a 0% FPR but
100% FNR. This suggests a trade-off between the achievable FNR and FPR.

Infinite validation data regime Even with infinite validation data, we may not
be able to achieve both perfect FNR and perfect FPR because of inherent lim-
itations of the safety score. For instance, at one extreme, if the safe and unsafe
examples have identical safety score distributions, then there is no way to dis-
tinguish them according to Definition 1. At the other extreme, if the safe and
unsafe examples have disjoint safety score distributions, then we can distinguish
them perfectly (i.e. achieve 0% FPR and 0% FNR). A typical real world scenario
will likely fall somewhere in between the two extremes, as illustrated in Figure 2.
The key quantity is the amount of overlap between the safety score distribution
for safe vs. unsafe examples, which will dictate the optimal achievable trade-off
between the FPR and the FNR.

Finite validation data regime The lack of sufficient validation data is another
source of error that degrades the best achievable FNR/FPR trade-off. Intuitively,
because we need to provably guarantee the FNR for ✏-safety, in the absence of
sufficient validation data, we must be conservative and issue more warnings
than necessary. For example, with zero validation data we have no choice but
to issue a warning for nearly every example, leading to a high FPR. In fact, in
Appendix 6.2 we show that if we have fewer than T data samples, we cannot
guarantee better than O(1/T ) FNR without incurring an FPR of close to 1.
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Samples

FNR = 	#FPR

Fig. 2: Even in the limit of infinite validation data, the best false positive rate achievable
(for a given ✏-safety level) is determined by the distribution of the safe samples and
the unsafe samples under the surrogate safety score function g.

Our conformal algorithm can guarantee an O(1/T ) FNR while the FPR is not
much higher than in the infinite data regime, demonstrating the (asymptotic)
optimality of the conformal algorithm presented below.

3.3 Algorithm to Achieve Guaranteed Safety Assurances

In this section, we will describe an algorithm that achieves ✏⇤-safety with a low
(nontrivial) false positive rate. The setup is as described in Section 3.1, with
current observations X, simulator Y , and true unknown future states Z.

If the simulation Y is perfect and has the same type as the ground truth future
state Z, i.e. Z = Y almost surely, then we can simply set g = f and choose
w(Y ) = I(g(Y ) < f0), and this w will automatically satisfy our definition of
safety. However, in most applications, it is difficult to provide any guarantees on
the accuracy of the simulation. For example, in autonomous driving situations,
traffic participants can behave in unexpected and hard to predict ways.

When we are uncertain about the simulation accuracy, we will require an
additional training dataset. With a dataset of (simulated future state, true future
state) pairs (Y1, Z1), (Y2, Z2), · · · , (YT , ZT ), where T is the number of samples,
we can guarantee ✏-safety. Let (Ŷ , Ẑ) denote a new test sample. We require only
a single assumption on the dataset:

Assumption 1 The sequence (Y1, Z1), · · · , (YT , ZT ), (Ŷ , Ẑ) is exchangeable,
i.e. the probability of observing any permutation of the sequence is equally likely.

Exchangeability is a strong assumption. However, it is weaker than typical
i.i.d. assumptions that underlie most machine learning methods with perfor-
mance guarantees: if a sequence of data is i.i.d., then it is also exchangeable. In
addition, if the distribution shifts, it is not prohibitively costly to collect a new
training dataset from the shifted distribution. This is because we require only a
very small dataset (e.g. in most of our experiments, the training dataset contains
only about 50 examples of unsafe situations)

Based only on Assumption 1, we design an algorithm to guarantee safety on
test data. The algorithm can be thought of as an instantiation of the conformal
prediction framework.
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Algorithm 1 Approximate ✏-safety
1: Input A set of training data (Y1, Z1), · · · , (YT , ZT ), surrogate safety score g, true

safety score f , and threshold f0; a new simulation Ŷ .
2: Compute A = {g(Yt) | f(Zt) < f0, t = 1, · · · , T}
3: Sample U uniformly in {0, 1, · · · , |{a 2 A | a = g(Ŷ )}|}
4: Compute q = |{a2A|a<g(Ŷ )}|+U+1

|A|+1

5: If q  1� ✏ then output 1, otherwise output 0

Intuitively, the procedure is as follows. We first compute a predicted safety
score (based on the simulator outputs) for each unsafe sample in the training
dataset (Line 2). We then sample a number from a uniform distribution (Line
3). We next compute the quantile value for the new test simulation, i.e. the
proportion of validation samples with a lower safety score than Ŷ (Line 4), with
a small randomization factor from the previous step. If this quantile value is
smaller than 1� ✏ (i.e. fewer than 1� ✏ of the unsafe samples from the training
set have a lower safety score), we say that this may be an unsafe situation;
otherwise, we say that it is safe (Line 5). The following proposition (proved in
Appendix 6.1) shows that Algorithm 1 can guarantee safety.

Proposition 1 Under Assumption 1, Algorithm 1 is ✏+ 1/(1 + |A|)-safe (with
respect to Ŷ , Ẑ).

To use Proposition 1 to provide safety guarantees, we choose ✏ based on the
number of samples available |A|. Specifically, if the desired safety level is ✏⇤, then
we can choose any ✏ < ✏

⇤ in Algorithm 1 such that

✏+ 1/(1 + |A|)  ✏
⇤ (1)

In other words, if our choice of ✏ satisfies Eq. (1), then Algorithm 1 will be ✏⇤-
safe. Intuitively, choosing a large ✏ decreases the false positive rate (FPR). This
is because according to Algorithm 1 Line 5, choosing a larger ✏ decreases the
number of times that a warning is output. Therefore, based on the number of
samples in the training dataset |A|, we choose the largest ✏ that satisfies Eq. (1)
(i.e. we choose ✏ = ✏

⇤ � 1/(1 + |A|)). We will call 1/(1 + |A|) the discretization
error.

Proposition 1 also reveals the sample complexity of the conformal prediction
algorithm. If the number of unsafe examples is too small (|A|  1/✏⇤ � 1), then
we must choose ✏ < 0 to ensure ✏⇤-safety according to Proposition 1. Algorithm 1
with ✏ < 0 will trivially always output 1 (i.e. always issue a warning). On the
other hand, if the number of unsafe examples exceeds the threshold (|A| > 1/✏⇤�
1), then there will be an ✏ > 0 that ensures ✏⇤-safety according to Proposition 1.
Consequently, Algorithm 1 will not be trivial. In practice, we find that to get
good results and a low false positive rate, it is sufficient to have sample count
|A| that exceeds the threshold by a small margin, such as |A| = 1.5/✏⇤ � 1. For
example, to achieve a 5% false positive rate, it is sufficient to have only about
30 unsafe examples.
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Note that there are two major components of our algorithm that can be tuned
to achieve a tighter FPR: the surrogate safety score, and the trained simulator or
prediction model. A surrogate safety score that is better correlated with the true
safety score will lead to a better FPR, as will a more accurate simulator model.
The guarantees and analysis of Algorithm 1 will hold regardless of the surro-
gate safety score and simulator model used; but if these components are chosen
poorly, not enough data is available, or the required ✏⇤ is too stringent, then this
procedure could become trivial (e.g. always issuing a warning). In practice how-
ever, we find that we are able to obtain good results for an autonomous driving
application with an off-the-shelf prediction model for reasonably low ✏

⇤-values
with not too much data (see Section 4).

3.4 Comparing Conformal Prediction with PAC Learning

We further compare the statistical learning and conformal prediction guaran-
tees. We first clarify the notation and formally define the different assump-
tions. Consider a sequence of training data (Y1, Z1), · · · , (YT , ZT ) and a se-
quence of test data (Ŷ1, Ẑ1), · · · , (ŶN , ẐN ). Let c1, · · · , cM denote the unsafe
subsequence of test data, i.e. (Ŷc1 , Ẑc1), · · · , (ŶcM , ẐcM ) is the subsequence of
(Ŷ1, Ẑ1), · · · , (ŶN , ẐN ) such that, for all m, f(Ẑcm) < f0.

Two possible assumptions that we could make on the training and test data
sequence are shown in Assumptions 2 and 3. In particular, marginal exchange-
ability (Assumption 2) is the same as Assumption 1 from the previous section.
The only difference here is that we explicitly state that we only require exchange-
ability with each test data point.

Assumption 2 (marginal exchangeability) For each n, the sequence (Y1, Z1),
· · · , (YT , ZT ), (Ŷn, Ẑn) is exchangeable.

Assumption 3 (i.i.d.) The training / test data sequence (Y1, Z1), · · · , (YT , ZT ),
(Ŷ1, Ẑ1), · · · , (ŶN , ẐN ) is drawn from an i.i.d. distribution.

Given a warning function, we use the random variables F̂c1 , · · · , F̂cM to de-
note failure of the warning function, i.e. F̂cm = I(w(Ŷcm) = 0). Note that F̂cm
depends on w, but we drop this dependence from our notation.

A learning algorithm is a function that takes as input the training data
(Y1, Z1), · · · , (YT , ZT ) and outputs a warning function w : X ! {0, 1}. There
are two main paradigms for designing learning algorithms with guarantees.

PAC Learning Under Assumption 3, a learning algorithm is (✏, �)-safe if with
1� � probability (with respect to randomness of the training data) the learned
warning function w satisfies for some ✏0 < ✏

F̂c1 , · · · , F̂cM ⇠ Bernoulli(✏0) (2)
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Conformal Learning For completeness we restate the conformal learning guar-
antee. A learning algorithm is ✏-safe if the learned function w satisfies for some
✏
0
< ✏

F̂cm ⇠ Bernoulli(✏0), for all m = 1, · · · ,M (3)

Comparing Assumptions Conformal learning requires weaker assump-
tions. Assumption 2 is much weaker than Assumption 3, and hence is applicable
to a much larger class of problems. For example, consider an autonomous driving
application where the training data are snippets from randomly sampled driving
scenes (no two training data points come from the same driving scene), and the
test data (Ŷ1, Ẑ1), · · · , (ŶN , ẐN ) is a sequence of driving snippets from a random
driving scene. The test data points are not independent because they are from
the same scene, and hence Assumption 3 is violated. However, Assumption 2
holds because the training data and any single test sample are snippets from
randomly sampled driving scenes.

Comparing Sample Complexity Conformal learning requires⇥(1/✏) train-
ing examples of unsafe situations (Proposition 1), while standard analysis in PAC
learning requires ⇥(1/✏2) examples. For example, consider the following (✏, �)-
safe algorithm: based on the simulation Y and the surrogate safety function g,
we consider the family of warning functions w✓(Y ) = I(g(Y ) < ✓). Our goal is
to estimate the false negative rate of w✓ (denoted by ✏⇤(✓) for each ✓ and select
the smallest ✓ such that ✏⇤(✓)  ✏.

To estimate ✏⇤, we compute the (empirical) false negative rate (denoted by
✏̂(✓) on the training data, i.e.

✏̂(✓) = 1/M
X

m

I(g(Ycm) � ✓) (4)

and use a standard concentration inequality (such as Hoeffding) to bound the
difference between ✏⇤(✓) and ✏̂(✓). Specifically, with probability 1� �

✏
⇤(✓) 2 ✏̂(✓)±

r
log(1/�)

2M
(5)

Note that Eq. (5) is already the tightest bound possible up to constants [11]. To

verify that w✓ has  ✏ false negative rate, we have to check that ✏̂(✓)+
q

log(1/�)
2M 

✏, which requires
r

log(1/�)

2M
 ✏ () M � log(1/�)

2✏2

i.e. we should have at least ⇥(1/✏2) samples.
In words, even a fixed w✓ requires ⇥(1/✏2) samples to verify its false negative

rate according to Eq. (5). Thus, finding w✓ to provably achieve low false negative
rate should require at least as many, if not more, training examples.

Comparing Usefulness of Guarantees PAC learning and conformal learn-
ing both have advantages. PAC learning has the advantage that its i.i.d. error
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rate guarantee in Eq. (2) is stronger than the marginal error rate guarantee in
Eq. (3). For example, if the downstream user is very sensitive to high variance
(i.e. it is unacceptable for all test examples to fail simultaneously even if the
probability is vanishingly small) then the i.i.d. error rate guarantee in Eq. (2)
might be necessary. Nevertheless, the risk can be reduced by alternative methods
such as financial tools (insurance). On the other hand, the conformal learning
guarantee in Eq. (3) has the advantage that it always holds, while the PAC
learning guarantee in Eq. (2) only holds with 1� � probability.

To summarize, conformal learning requires much weaker assumptions and
fewer samples, and its guarantees always hold (rather than with 1� � probabil-
ity). PAC learning offers stronger guarantees when its assumptions and sample
complexity requirements are met.

4 Experiments: Driver Alert System

We empirically validate the guarantees of our framework on a driver alert safety
system using real driving data. The system should warn the driver if the driver
may get into an unsafe situation, without issuing too many false alarms. We
show that the false negative rate (the percentage of unsafe situations that the
system fails to identify) is indeed bounded according to Proposition 1, while the
FPR remains low.

4.1 Experimental Setup

Methods We evaluate our framework on the setup described in Section 3.1.
We use Trajectron++ [25] as our future dynamics model (i.e. in the notation
of Section 3.1, Y is the output of Trajectron++ and g = f). We choose the
safety score f as a weighted distance metric, where agents in the direction of the
ego-vehicle velocity vector are considered “closer” than agents in the orthogonal
direction. Refer to the Appendix for a more detailed explanation.

Datasets We use the nuScenes [2] and the Kaggle Lyft Motion Prediction [1]
autonomous driving datasets. Each dataset contains multiple scenes, and each
scene contains multiple trajectories. The trajectories in a scene are correlated
with each other, but the different scenes are sufficiently distinct from each other
to be considered exchangeable. To generate a dataset of exchangeable trajecto-
ries, we sample a single trajectory uniformly at random from each scene.

Data Splitting To compute average performance, we use random train and
test splits. For both datasets, we first pool together all available data points,
randomly shuffle them, and separate them back into training and test splits
(with the same size as the original splits). We ran 100 trials for each experiment,
and averaged over the results.

4.2 Results and Discussion

In Fig. 3a, 3b, and 3c we vary several parameters (safety threshold f0, safety
guarantee ✏, and proportion of unsafe situations) for nuScenes. We show quali-
tatively similar results for the Lyft dataset in Figure 3d. Our main observations:
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(a) False negative and false positive rates on

the nuScenes dataset with varying f0 and ✏ =
0.05. The theoretical upper bound on epsilon is

shown in green. The false negative rate (red) is

below the upper bound and the false positive

rate (blue) is very low.

(b) False negative and false positive rates on the

nuScenes dataset with varying ✏ and f0 = 25.
The theoretical upper bound on epsilon is shown

in green. The false positive rate (blue) improves

with higher ✏.

(c) False negative and false positive rates on the

nuScenes dataset with varying proportions of

unsafe samples in the training set. The theoret-

ical upper bound on epsilon is shown in green.

Here, ✏ = 0.05 and f0 = 25.

(d) False negative and false positive rates on

the Kaggle Lyft dataset with a varying ✏ value.

Here, f0 = 3.5, and there are approx. 50 unsafe

examples in the training dataset.

Fig. 3: False negative rate, false positive rate, and theoretical upper bound on epsilon
for the nuScenes and Lyft datasets while varying several parameters.

1. The false negative rate (i.e. safety) is always within the theoretical bound
in Proposition 1. We achieve these false negative rates with very little data.
nuScenes has 50-70 unsafe examples in the training dataset, and Lyft has about
50. Yet, even with these few examples, we can ensure a false negative rate to
within 1 or 2% of the desired ✏.

2. The false positive rate (FPR) is generally very good — well below 1%
on the nuScenes dataset. We use an off-the-shelf trajectory predictor trained
on a small academic dataset; a more accurate trajectory predictor trained on
industry-sized datasets might be expected to provide a more discriminative safety
score (as in Figure 2), and thus a further improved FPR. Note that as shown
in Figure 4 in the Appendix, there is a tradeoff between ✏ and the FPR when
there are few (e.g. < 1/T ) samples, which is consistent with what our theory
from Section 3.2 would predict.

3. One previously unmentioned benefit of our approach is that our method
is robust to label frequency shift — the frequency of unsafe situations can dif-
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fer between the training data and test data. Observe that the output of Algo-
rithm 1 depends only on the unsafe examples; consequently, the safety guarantee
in Proposition 1 still holds if we increase or decrease the number of safe exam-
ples. For example, the training data collection process could intentionally focus
on unsafe situations, so that unsafe examples are over-represented in the training
data. We empirically simulate this in Figure 3c where we increase the propor-
tion of unsafe examples in the training set (by deleting safe examples). The
performance of our algorithm does not change qualitatively.

In the comparison of PAC learning and conformal learning, we argued that
the main advantage of PAC learning is that the failures are i.i.d., so the total
number of failures should have low variance (due to the Central Limit Theorem).
However, we show empirically that users need not be overly concerned about
highly correlated failures, as long as the test samples are not inherently highly
correlated. We find that the variance on the false negative rate from different
train/test splits is very low. With ✏ = 0.06, for instance, it was only 0.0014, and
this variance is representative among the various ✏ experiments. We show more
evidence of this in the Appendix.

5 Experiments: Robotic Grasping

Finally, we validate the guarantees of our framework on a robotic grasping sys-
tem that should warn the user when the robot will fail to pick and transport
an object. Picking is a core problem in warehouse robotics [6, 9, 15, 34, 35, 18–
20], and failures hurt throughput (potentially even stopping the assembly line).
Failures can also lead to dropped or damaged goods.

We again evaluate our framework on the setup described in Section 3.1, using
the Grasp Quality Convolutional Neural Network (GQ-CNN) from [18–20] as our
predictor model on the DexNet 4.0 dataset of synthetic objects grasped with a
parallel-jaw gripper [20]. This model classifies whether a candidate robotic grasp
will be successful, and we use the probability of a successful pick as the safety
score. We consider a candidate grasp “unsafe” if it will not be able to successfully
pick the object (i.e. Z = 0). Note that this is exactly an ROC curve tuning setup.
We averaged over 100 trials of Algorithm 1 with randomized train/test splits.

With ✏ = 0.05, we achieved a false negative rate of 0.05, and a false positive
rate of 0.11. With ✏ = 0.1, we achieved a false negative rate of 0.10 and a false
positive rate of 0.04. The conformal guarantees of our framework hold.

6 Conclusion

In this work, we introduce a broadly applicable framework that uses conformal
prediction to tune warning systems for robotics applications. This framework
allows us to achieve provable safety assurances with very little data. We demon-
strate empirically that the guarantees on the false negative rate hold for a driver
alert system and for a robotic grasping system. In future work, we would like
to explore conformal prediction in non-exchangeable scenarios [27], conditional
safety [10], and deployment in industry-scale applications. Another important
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future direction is to study the impact of the predictor on the data that it is
trying to predict [24].
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