
PiP-X: Funnel-based Online Feedback Motion
Planning/Replanning in Dynamic Environments

Mohamed Khalid M Jaffar and Michael Otte

University of Maryland, College Park, MD 20742, USA
{khalid26, otte}@umd.edu

Abstract. We propose an online single-query sampling-based feedback
motion re-planning algorithm using finite-time invariant sets, “funnels”.
We combine concepts from nonlinear systems analysis, sampling-based
motion planning, and graph-search methods to create a single framework
that enables feedback motion planning/replanning for general nonlinear
dynamical systems in a dynamic workspace. We introduce a novel graph
data structure to represent a network of volumetric funnels, enabling the
use of quick graph-replanning techniques. The use of incremental search
techniques and a pre-computed library of motion-primitives ensure that
our method can be used for quick on-the-fly rewiring of controllable
motion plans in response to changes in the environment. We validate our
approach on a simulated 6DOF quadrotor platform operating in a maze,
and random forest environment.

Keywords: feedback motion planning, online replanning, nonlinear sys-
tems analysis, sampling-based algorithms, incremental graph-search

1 Introduction

The ability to replan is essential whenever a robot must explore an unknown
or changing environment while using a limited sensor radius. In scenarios where
the operating workspace has fast-moving obstacles or is densely cluttered with
obstacles, a motion-plan must be updated quickly and on-the-fly. Hence, there
is a need for fast replanning algorithms. As the obstacle-space changes, the valid
state-space also changes, and it is computationally expensive to rebuild motion
plans from scratch in such non-convex spaces. Sampling-based planning methods,
along with theoretical control techniques are often used in dynamic and high-
dimensional spaces to provide a motion-plan that respects the kinematics and
dynamics of the vehicle. Feedback motion planning considers the two sub-blocks
of a robot-autonomy stack—motion planner and controller—in tandem.

For robots that must react quickly to changes in the environment, the compu-
tational complexity of brute-force replanning—planning from scratch whenever
the environment changes—is often impractical. Quick replanning methods derive
efficiency by repairing an old plan to reflect the updated state of the environment
(in practice, the invalid portion is often a small fraction of the whole plan; in
such cases it can be orders of magnitude quicker to repair, than to replan from

2 M.K.M. Jaffar and M. Otte

Fig. 1. Online funnel-based re-planning algorithm: PiP-X

scratch). However, the use of such methods has been limited to discrete grids
and graphs in which edges represent one-dimensional trajectories through space-
time. In this paper, we extend the use of such incremental search methods to the
case of volumetric funnels by using a novel graph data structure representation.

The algorithm that we present is called PiP-X (Planning/replanning in Pipes
in dynamic or initially unknown environments). Using systems analysis and in-
variant set theory, our approach computes dynamically feasible and verified tra-
jectories with formal stability guarantees. The use of sampling techniques enables
our algorithm to be computationally tractable for higher dimensional systems
and configuration spaces. Additionally, our method is capable of using trajectory
libraries to speedup online computation. Hence, our kinodynamically-feasible,
online re-planning method finds relevance in practical scenarios such as safely
navigating through dynamic environments. The novelties of our algorithm are
summarized below.

• Feedback motion re-planning with funnels, using sampling-based techniques
and incremental graph-search.
• A novel approach to compute motion plans with formal invariance guarantees
for any nonlinear robot-system, that can be feasibly tracked by the robot.
• Representing the network of funnels and its inter-sequencibility using a bipar-
tite graph data structure, enabling the use of fast graph-replanning methods
to update kinodynamically-feasible safe motion-plans on-the-fly.

We believe this is the first work to propose techniques for funnel-based online
motion re-planning using graph-based quick rewiring methods. A full exposition
of our work—with detailed explanations, additional discussions and experimental
results—appears in a technical report [1], included as supplementary material.

2 Related Work

A variety of kinodynamic planners [2,3] extend geometric sampling-based meth-
ods, such as RRT [4] and PRM [5], to address motion planning for differentially
constrained robots. Such algorithms “steer” the vehicle by randomly sampling

Funnel-based Online Feedback Motion Re-planning 3

control inputs and simulating the trajectory based on the dynamics [6]. Some
methods formulate an optimal control problem with the trajectory given by the
planner, and solve it using shooting methods [7] or closed-form solutions [8].
Others smooth the path using splines or trajectory optimisation [9], and track
it using feedback controllers such as PID or receding-horizon controllers [10].

Historically, robot-autonomy stacks have a hierarchical structure: the high-
level path planner computes an open-loop trajectory, and a low-level controller
tracks the trajectory. This decoupled approach can be disadvantageous because
controller tracking errors, and uncertainties or actuator saturations might ren-
der the planned path infeasible to track. Tracking errors between the planned
and actual trajectories can lead to critical failures such as collisions with obsta-
cles. These shortcomings are addressed by feedback motion planning, in which
the planner explicitly considers the stabilising feedback controller to generate
motion-plans for dynamical continuous systems.

Tedrake et al. [11] popularised the notion of LQR-trees − an algorithm that
covers the state-space using a tree of trajectories, locally stabilised by an LQR
controller and verified by Lyapunov level-set theory. Majumdar et al. [12] com-
pute the funnels offline, and use them to plan online for flying a glider through
a dense setting. Funnel-based motion planning for a robotic arm using adaptive
feedback control is presented in [13]. In parallel to such Lyapunov analysis, the
controls community have proposed reachability set-based trajectory design [14]
[15]. FaSTrack [16] proposes an adversarial game-theoretical approach to gener-
ate worst-case tracking error bounds around trajectories using Hamilton-Jacobi
reachability analysis. Singh et al. [17] use contraction theory and convex opti-
misation to compute invariant-tubes around trajectories, and plan using them.

Earlier work on re-planning, such as D∗ [18] and D∗Lite [19], are based on
incremental, heuristic-guided shortest-path repairs on a discrete grid embed-
ded in the robot’s workspace. Such discretization assumes a constant resolution,
and requires post-processing to achieve kinodynamic feasibility and controllabil-
ity. RRTX [20], an asymptotically optimal sampling-based re-planning algorithm,
rewires the shortest-path subtree to exclude nodes and edges that are in collision.

Contributions: Our research differs from previous work in that it is the first
online global feedback motion re-planning algorithm using funnels. Through the
use of a graph to represent funnels and its sequencibility, we are able to recast the
challenging problem of feedback motion planning for non-trivial systems into a
geometric one, making it tractable for online re-planning. We implicitly address
the two-point boundary value problem during graph-rewiring by using system
stability analysis and trajectory sequencibility.

3 Preliminaries

3.1 Invariant Set Theory

The notion of region of attraction of asymptotically stable fixed points can be ex-
tended to certifying time-varying trajectories. Such regions of finite-time invari-
ance around a trajectory are referred to as “funnels” [21]. Consider a closed-loop

4 M.K.M. Jaffar and M. Otte

nonlinear system, ẋ(t) = f(t,x(t)) with state x ∈ Rn, and f being Lipschitz
continuous in x and piecewise continuous in t. For a finite time interval [t0, tf],
a funnel is formally defined as follows,

Definition 1. Funnel − A set, F ⊆ [t0, tf]×Rn, such that for each (τ,xτ) ∈ F ,
τ ∈ [t0, tf], the solution to the system’s equations, x(t), with initial condition
x(τ) = xτ , lies entirely within F till final time, i.e. (t,x(t)) ∈ F ∀ t ∈ [τ, tf].

Intuitively, if the closed-loop system starts within the funnel, then the sys-
tem states evolving due to its dynamics remain within the funnel during the
entire finite-time horizon. We leverage tools from Lyapunov theory to compute
bounded, inner-approximations of the funnel. The compact level-sets B(t) of a
candidate function, V (t,x), satisfying the Lyapunov conditions (V ≥ 0, V̇ ≤ 0),
is positively invariant. Then, the set F defined as in Eq. (1) is a funnel.

F = {(t,B(t)) | t ∈ [t0, tf]} B(t) = {x | 0 ≤ V (t,x) ≤ ρ(t)} (1)

As noted in [21], under certain mild assumptions, it is sufficient to analyse the
boundary of the level sets ∂B(t), and the invariance conditions can be reformu-
lated in terms of boundary function, ρ(t) as: V (t,x) = ρ(t) =⇒ V̇ (t,x) ≤ ρ̇(t).
In other words, with respect to time, the Lyapunov function at the boundary,
∂B(t) should decrease faster than ρ(t) for invariance. In our case, we are inter-
ested in computing backward-reachable sets to a compact region of state-space.
Given a bounded space of desired final-states, referred to as sub-goal region
Xf ⊆ Rn, we compute funnels that end within the region, i.e. B(tf) ⊆ Xf .

3.2 Verified Trajectory Libraries

Maneuver Automaton, introduced in [22], discusses the relevant properties re-
quired for sequencing trajectories from a library of maneuvers. To analyse the
sequencibility of funnels during online motion planning, we decompose the state

vector into cyclic and non-cyclic states, x =
[
xT
c xT

nc

]T
. Cyclic states are defined

as the coordinates to which the open-loop dynamics of a Lagrangian system are
invariant, or alternatively, the dynamics depend only on the non-cyclic states,
ẋ(t) = f ′(t,xnc(t),u(t)).

For example, in a 2D disc robot, position is the cyclic coordinates, whereas
velocity would be the non-cyclic counterpart. It is sufficient to verify whether the
regions-of-invariance projected onto a subspace formed by the non-cyclic state
coordinates are sequentially compossible [23]. One can shift the funnel along the
cyclic coordinates so as to contain the outlet of the previous funnel.

Definition 2. A funnel-pair, (Fi, Fj) is said to be motion-plan compossible
if and only if PS

nc(Bi(tfi)) ⊆ PS
nc(Bj(t0j)), where PS

nc(.) is the projection operator
from the state-space onto the subspace formed by non-cyclic coordinates.

In addition to posing a less strict condition, the notion of motion-plan com-
possibility plays a significant role in designing the funnel library — one can
use a finite number of motion primitives to cover an infinite subspace of cyclic
coordinates by “shifting” the trajectories appropriately.

Funnel-based Online Feedback Motion Re-planning 5

3.3 Discrete graph-based replanning using incremental search

Incremental search techniques reuse current valid information to recalculate the
solution path in the next iteration, often achieving orders of magnitude speedup
versus methods that replan from scratch. One way in which quick replanning al-
gorithms, such as D∗Lite [19], achieve efficiency is by maintaining a sorted queue
of nodes that need to have their cost values repaired. We adopt a rewiring-cascade
similar to D∗Lite for repairing the shortest-path-to-goal subtree. For each node,
the algorithm maintains an estimate of cost-to-goal value g(v), defined as the sum
of cost of all edges along the path from node v to the goal. Additionally, it com-
putes an lmc value (one-step lookahead minimum cost) for all nodes, defined as,
lmc(v) = minv′∈N+(v){c(v, v′) + g(v′)}, where N+(v) is the set of out-neighbors
of v. The key idea is to compare the two values, g and lmc, to determine whether
changes have occurred in the shortest path to the goal, explained as follows.

1. g(v) = lmc(v) =⇒ v is consistent → no changes to the shortest path from
v to goal.

2. g(v) < lmc(v) =⇒ v is under-consistent → cost of the path to goal has
increased, and we have to repair the entire (reverse) subtree rooted at v.

3. g(v) > lmc(v) =⇒ v is over-consistent → a shorter path exists: update the
parent and cost-to-goal of v, and propagate this cost-change information to
the in-neighbors of v.

The algorithm does not repair all the nodes after every edge-cost change;
rather, it repairs only promising nodes that have the “potential” to lie in the
robot’s shortest path to goal, determined using heuristics, g and lmc values.
In typical graph-based motion planning algorithms, graph-vertices and edges
represent configurations and trajectories, respectively. In contrast, in this paper,
we use graphs to represent a network of funnels in a way that respects their
volumetric nature and compossibility constraints (Definition 2).

4 Problem Formulation

Consider a Lagrangian robot-system with state, x = (q,v) ∈ S ⊆ R2d, where
q ∈ C ⊆ Rd is the pose, v ∈ Rd represents the velocities, and d is the dimension
of C-space. The robot operates in a workspace W ⊆ C, with finite number of
obstacles occupying a subspace, O ⊂ W. Let Cobs be the open subset of configu-
rations in which the robot is in-collision. Cfree = C \ Cobs is the closed subset of
C-space, in which the robot can “safely” operate without colliding with obstacles.

Definition 3. Funnel-edge − Given a compact set Xw ⊆ C centered around
w ∈ C, an initial configuration v ∈ C, and finite time interval [t0, tf], funnel-
edge ϕ(v, w) ⊆ C is the projection of maximum-volume funnel F satisfying
(1), such that v ∈ PS

C (B(t0)) and PS
C (B(tf)) ⊆ Xw. A funnel-edge is said to be

valid, if and only if PC
W(ϕ(v, w)) ∩ O = ∅. The cost of the funnel-edge is given

by the length of the nominal trajectory x0(t) projected down to C-space, q0(t),
cϕ(v, w) =

∫ tf
t0
ds(t), where ds = ∥dq0∥2 (Euclidean norm), and PA

B (.) is the
projection operator from a space A to a lower dimensional subspace B.

6 M.K.M. Jaffar and M. Otte

Fig. 2. Overview of PiP-X algorithm: our method consists of an offline stage of dynam-
ical system analysis, and an online phase of sampling-based funnel-graph construction
and incremental re-planning in dynamic environments

Definition 4. Funnel-path − For a configuration q1 ∈ Cfree, and a compact
set X2 ⊆ Cfree, funnel-path π(q1,X2) is a finite sequence of valid funnel-edges
with underlying motion-plan compossibility, i.e. π(q1,X2) = {ϕ1, ϕ2, . . . ϕn},
such that q1 ∈ PS

C (Bϕ1
(t01)) and PS

C (Bϕn
(tfn)) ⊆ X2. The cost of the funnel-

path is defined as cπ(q1,X2) =
∑n

i=1 cϕi

Problem 1. Online feedback motion planning − Given Cfree, obstacle space
O(t), and a goal region Xgoal, for a robot starting at a configuration, qrobot(0) =
qstart ∈ Cfree, calculate the optimal funnel-path, π∗(qrobot(t),Xgoal), move the
robot by applying a feedback control policy, u : (x,x0, t)→ U and keep updating
π∗ until qrobot(t) ∈ Xgoal, with π

∗(qrobot(t),Xgoal) = argminπ cπ(qrobot(t),Xgoal)

Problem 2. Feedback motion replanning − Assuming that the robot has an
ability to sense obstacle changes∆O(t), continually recompute π∗(qrobot(t),Xgoal)
until qrobot(t) ∈ Xgoal.

We propose techniques and algorithms to plan/replan minimum-cost funnel-
paths on-the-fly. The funnel-path is a sequence of maneuvers with formal guaran-
tees of invariance, associated with state-feedback tracking control policies. The
continuously updated motion plan with invariant sets and control policies en-
sures that the robot trajectory always lies within the funnel path, avoids dynamic
obstacles, and ultimately reaches the desired goal region.

5 Approach

We begin this section with a brief high-level outline of our approach, which
involves: pre-computing a library of funnels, and online motion re-planner that
keeps updating the optimal funnel-path. Each part will be discussed in greater
detail in its own subsection, Sections 5.1−5.3. As illustrated in Fig. 2, our method
has an offline stage of nonlinear system analysis using invariant set theory, and
an online phase of sampling-based motion re-planning using incremental search.

We compute backward-reachable invariant sets, detailed in Section 5.3, using
Lyapunov theory. Given an initial state, a compact set of desired final-states and

Funnel-based Online Feedback Motion Re-planning 7

Fig. 3. (a) Funnels in R+ × Rn (b) Corresponding graph data
structure with augmented vertices representing the funnel-
network. Motion-edges (solid) representing traversability are
finite-cost, whereas dashed-edges are zero-cost continuity-
edges encoding compossibility information — whether or not
trajectories “flow” into the subsequent funnel. Note that go-
ing from A1 to C2 is infeasible, whereas A1−B1−B3−D3 is
a feasible funnel-path. (c) An example in a dynamic forest.
Funnel-edges are light gray, dynamic obstacles are dark gray,
the funnel-path is green, the start is magenta, and goal is red. (c)

a finite-time horizon, we calculate the certified region of invariance characterised
by Lyapunov level-sets centered around the nominal-trajectory. Due to the com-
putational complexity of nonlinear system analysis, we pre-construct a library
of verified trajectories with various combinations of initial and final states, to be
used during the online-phase of feedback motion re-planning.

A network of funnels is incrementally built online using sampling methods
(RRG), and motion plans/replans are computed through it. The funnel-graph
embedded in the C-space is constructed based on the aforementioned system
analysis in the higher dimensional state-space. We analyse the motion-plan com-
possibility (Definition 2) among funnel-pairs, and additionally include that in-
formation in the form of an augmented graph data structure (see Fig. 3 and
Section 5.1). With this graph, we compute a shortest-path subgraph (tree) of
funnels, rooted at the goal using incremental search, introduced in Section 3.3.

Motion plans are recomputed on-the-fly in the event of changes in obstacle-
space, ∆O, either due to robot sensing new obstacles or the obstacles being
dynamic themselves. The funnel-path to the goal region and the correspond-
ing sequence of control-inputs are input to the robot, with state-observer and
obstacle-sensors closing the feedback-loop. Section 5.2 describes our feedback
motion planning/replanning algorithm in-depth.

5.1 Graph data structure to represent a volumetric funnel network

Quick replanning using volumetric funnels requires that funnels and its inter-
compossibility information be stored in a graph data structure that, both, (i)
reflects the volumetric nature of funnels in the C-space, and (ii) is compatible
with existing fast graph-based replanning techniques. In this section, we present

8 M.K.M. Jaffar and M. Otte

a data structure to represent the network of funnels, enabling the use of incre-
mental graph-replanning techniques to quickly rewire funnel-paths (Definition
4). Our method essentially constructs “links” between regions of state-space
with funnels that have an implicit notion of time. Traversability of the robot
system and sequencibility of trajectories is represented through motion-edges
and continuity edges, respectively, in the augmented graph G.

The edge-set of this graph consists of motion-edges and continuity-edges,
E = Em ∪ Ec. A graph-vertex, v is a tuple consisting of a configuration q, and
the respective funnel f : v − q f . As observed in Fig. 3-b, there are two types of
graph vertices − inlet-nodes and outlet-nodes, V = {VI , VO}. The authors would
like to point out that the augmented graph is indeed bipartite with disjoint sets of
inlet-nodes and outlet-nodes [1]. (Dashed) continuity-edges, ec are zero-cost, and
have no bearing on the cost of the solution funnel-path to goal, or the optimality
guaranteed by the graph-search algorithm.

5.2 Online motion planning-replanning algorithm − PiP-X

We incrementally build a reverse funnel-graph, abstract it into aforementioned
graph data structure, and compute the optimal funnel-path using the routine−
plan() (Algorithm 3). The pre-planning process on a higher level is as follows.

1. Sample a configuration qrand, and extend ϵ-distance from the nearest config-
uration in the existing funnel-graph to determine a new configuration qnew.

2. Determine the set of nearest neighbors (line 4) in the shrinking r-ball [24],
r = min{r0(log|V |/|V |)1/d, ϵ}, where |V | is cardinality of the set of configu-
rations, d is the dimensionality of C, and r0 is a user-specified parameter.

3. From the funnel library L, choose the trajectory that would steer the robot
from n to a δ-ball near qnew as well as the return trajectory from qnew to a
δ-ball near n, for all n in the set of nearest neighbors.

4. Amongst the funnel-edges ϕ, check sequencibility, and “overlap” with obsta-
cles. Denote the inlets Xi and outlets Xo as nodes; ϕi as a motion-edge, and
zero-cost edges signifying compossibility as continuity-edges (Algorithm 4).

5. An incremental search (Algorithm 2) on the constructed sampling-based
graph keeps updating the shortest-path tree of funnels rooted at goal.

After each update of the shortest-path subgraph (tree) (line 6), all consistent
nodes in the graph know their best parent, enabling the planner to backtrack
the solution funnel-path using parent pointers. The search is focused towards the
robot using an admissible heuristic h(v), thereby enabling quick rewiring of the
optimal path, similar to the A* algorithm. If a nontrivial admissible heuristic
cannot be found, using the trivially admissible h(v) = 0 will work.

The pseudocode of our online re-planner, PiP-X is presented in Algorithm 1.
The inputs to the algorithm are start configuration qstart, goal region Xgoal,
the pre-computed funnel library L, and the initial environment − characterised
throughW, and obstacles known a priori, O. The obstacle-space will be updated
when any changes, ∆O(t) are discovered on-the-fly. The various subroutines of
the algorithm, providing low-level implementation details, are now explained.

Funnel-based Online Feedback Motion Re-planning 9

Algorithm 1 PiP-X

Input: qstart, Xgoal, Cfree, O, L
Output: F,G ▷ Funnel-edges set, funnel-Graph
1: Parameters: ϵ, r0, TP , IM
2: Initialisation : t← 0, startFound← 0,
3: G.add(Xgoal), F ← ∅
4: while t < TP ∨ ¬startFound do ▷ Pre-planning
5: (F,G)← plan()
6: if inFunnel(qstart,F) then
7: startFound← 1
8: j ← 0, qrobot ← qstart, qprev ← qstart
9: while j < IM ∧ qrobot /∈ Xgoal do ▷ Online phase

10: at sensingFrequency do ▷ Sensing obstacle-changes
11: ∆O ← senseObstacles()
12: modifyEdgeCosts(∆O)
13: (F,G)← plan() ▷ Repairing the motion-plan
14: at robotMotionFrequency do ▷ Robot movement
15: qrobot ← robotMove(qrobot, qgoal)
16: if g(qrobot) ̸=∞ then ▷ a funnel-path exists
17: km ← km + computeHeuristic(qprev, qrobot)
18: qprev ← qrobot; j ← 0 ▷ reset idleness count
19: else
20: qrobot ← qprev ▷ stay at current location
21: j ← j + 1 ▷ update idleness count
22: if qrobot ∈ Xgoal then
23: return SUCCESS ▷ Algorithm success

24: return NULL ▷ Algorithm failure

Algorithm 2 computeShortestPathTree()

1: kstart ← computeKey(qstart)
2: while Q.topKey() < kstart∨ lmc(qstart) ̸= g(qstart) do
3: v ← Q.pop(); kold ← key(v)
4: knew ← computeKey(v)
5: if knew > kold then ▷ check & update key
6: Q.push(v, knew)
7: else if g(v) > lmc(v) then ▷ over-consistent
8: g(v)← lmc(v)
9: for all u ∈ Pred(v) do updateVertex(u)

10: else ▷ under-consistent
11: g(v)←∞
12: updateVertex(v)
13: for all u ∈ Pred(v) do updateVertex(u)

Algorithm 3 (F,G)← plan()

1: qrand ← sampleFree()
2: qnew ← extend(G, qrand, ϵ)
3: r ← rBall()
4: N ← findNearestNeighbors(qnew, r,G)
5: (F,G)← constructFunnelGraph(qnew,N)
6: computeShortestPathTree()
7: return (F,G)

Algorithm 4 (F,G)← constructFunnelGraph(qnew,N)

1: for all n ∈ N do
2: F−

n ← steer(qnew, n) ▷ funnels out of qnew
3: F+

n ← steer(n, qnew) ▷ funnels into qnew
4: if F−

n ̸= ∅ then
5: {Xi,Xo} ← getNode(F−

n) ▷ inlet-outlet node
6: for all Fo ∈ outFunnels(n) ∪ {F+

n } do
7: if compossible(F−

n ,Fo) then
8: Ni ← inletNode(Fo)
9: Ec ← Ec ∪ (Xo,Ni) ▷ continuity-edge

10: V ← V ∪ {Xi,Xo}; Em ← Em ∪ (Xi,Xo)
11: updateVertex(Xo)

12: if F+
n ̸= ∅ then

13: {Xi,Xo} ← getNode(F+
n) ▷ inlet-outlet node

14: for all Fi ∈ inFunnels(n) ∪ {F−
n } do

15: if compossible(Fi,F+
n) then

16: No ← outletNode(Fi)
17: Ec ← Ec ∪ (No,Xi) ▷ continuity-edge

18: V ← V ∪ {Xi,Xo}; Em ← Em ∪ (Xi,Xo)

19: F ← F ∪ {F−
n ,F+

n } ▷ adding to funnel-edges set

20: for all Fi ∈ inFunnels(qnew) do
21: for all Fo ∈ outFunnels(qnew) do
22: if compossible(Fi,Fo) then
23: Xo ← outletNode(Fi)
24: Xi ← inletNode(Fo)
25: Ec ← Ec ∪ (Xo,Xi) ▷ continuity-edge

26: return F, G = (V,Em, Ec)

Algorithm 5 updateVertex(v)

1: lmc(v)← computeLMC(v)
2: parent(v)← findParent(v)
3: if v ∈ Q then
4: Q.remove(v)

5: if g(v) ̸= lmc(v) then
6: key(v)← computeKey(v)
7: Q.push(v, key(v))

Algorithm 6 modifyEdgeCosts(∆O)
1: for all e = (v, w) ∈ Em do
2: if ¬collisionFree(e,∆O) then
3: c(v, w)←∞
4: else
5: c(v, w)← cprev

6: updateVertex(v)

Sampling and Graph extension: The C-space is explored using sample-

Free() and extend() routines (Algorithm 3, lines 1−2). The configurations qrand
are independent and identically (i.i.d.) drawn from the free-space, Cfree at ran-
dom. We determine the nearest configuration in the existing funnel-graph, based
on geodesic distance, and extend by at most an ϵ-distance to obtain a new con-
figuration qnew. If this configuration is already in one of the funnel-inlets, we
discard and continue with the next sampling, because we are guaranteed to find
a set of maneuvers which can drive the robot from this configuration to the goal.

Constructing the search funnel-graph (Algorithm 4): We construct
funnels, whenever possible, between the new configuration qnew and all of the
nodes in the neighbor-set, n ∈ N , by using the subroutine steer(). The inlet-
nodes Xi, and outlet nodes Xo are added to the set of graph-vertices V , and
the directed edge, (Xi, Xo), is added to the set of motion-edges, Em. Sequen-
cibility amongst the newly constructed funnels is represented through zero-cost
continuity-edges between the corresponding outlets and inlets. The subroutine
compossible() checks whether a funnel-pair is motion-plan compossible as de-

10 M.K.M. Jaffar and M. Otte

fined in (2). The ellipsoid-in-ellipsoid check is by approximating the outlet-
ellipsoid into a convex hull by sampling points on the boundary of the ellipsoid,
∂Eo. The extreme-points are chosen based on singular-value decomposition of
the ellipsoid matrix Mo, and checked whether it lies in the interior of Ei.

Invoking updateVertex() in line 11 ensures propagation of cost-changes and
possible rewiring of the shortest-path subgraph (tree) of funnels due to the new
sample. The cost-to-goal value of all the new nodes, g(v) is initialised to be
infinite by default. By the virtue of the nodes being inconsistent (specifically
over-consistent), they are pushed into the priority queue Q, and will be repaired
if they have the “potential” to lie in the solution funnel-path to goal.

Computing the shortest-path tree (Algorithm 2): Inconsistent nodes
are popped out of the priority queue Q and repaired, i.e. made consistent until
the robot’s start-node becomes consistent, or the queue becomes empty (usually
encountered during the pre-planning phase). So, in effect, the shortest-path to
goal from each “promising” node in the search-graph, based on cost-to-goal and
heuristic (Euclidean distance), is quickly determined. updateVertex(v) (Algo-
rithm 5) computes lmc value of vertex v, and determines the best parent of the
node by analysing its outNeighbors. The node v is removed from the priority
queue Q, its key value is updated, and added to the queue only if inconsistent.

Robot motion: The various modules in Algorithm 1: sensing (lines 10−12),
planning/replanning (line 13) and robot motion (lines 14−21) have different
operating frequencies. robotMove(q1, q2) in line 15 determines and applies the
corresponding control policy to move from q1 to q2. The changes to the obstacle
set, ∆O are estimated using sensors on the robot, and the cost of affected edges
are updated using modifyEdgeCosts(∆O) (Algorithm 6) in line 12.

The pre-planning phase in Algorithm 1 (lines 4−7) continues until the start
configuration lies within one of the funnel-inlets, and the funnel-graph is dense
enough to have covered a sufficient volume of the C-space (ensured using a pre-
planning timeout, Tp). A solution funnel-path exists if the robot configuration
lies in one of the inlet-nodes and has a finite cost-to-goal value. A funnel F is said
to be in-collision with obstacle-set O, if PS

W(F) ∩O ≠ ∅, where PS
W(.) projects

down to the workspace. Assuming obstacles with locally Lipschitz continuous
boundaries, we use convex-hull approximations to check for collision with funnels.

5.3 Precomputing regions of finite-time invariance

Determining a closed-form solution to Eq. (1) for a general class of Lyapunov
functions is not guaranteed, and is computationally intractable. Under certain
assumptions such as polynomial closed-loop dynamics, and quadratic Lyapunov
functions, the problem of computing the funnels can be reformulated into a Sum-
of-Squares (SoS) program [11]. Consider a quadratic Lyapunov candidate func-
tion, defined using a positive definite matrix P (t) centred around the nominal
trajectory x0(t): V (t,x) = (x−x0(t))

TP (t)(x−x0(t)). For the class of piecewise
polynomials P (t), we solve the SoS program using polynomial S-procedure.

The convex optimisation problem of maximising the funnel-volume while sat-
isfying Lyapunov conditions is solved using bilinear alternation — improving ρ(t)

Funnel-based Online Feedback Motion Re-planning 11

and finding Lagrange multipliers to satisfy negativity of (V̇ (t,x) − ρ̇(t)) in the
semi-algebraic sets [21]. ForM ∈ Sn

+, set of n×n symmetric, positive definite ma-
trices and c ∈ Rn, (x− c)TM(x− c) = 1 represents an ellipsoid centred around
c. The level sets B(t) in Eq. (1), corresponding to the quadratic Lyapunov func-
tion, are the closed set—interior and boundary—of ellipsoids centered around the
nominal trajectory. The corresponding ellipsoidal matrix is: E(t) = P (t)/ρ(t).

The region of desired final-states, referred to as sub-goal, Xf is assumed to
be an ellipsoid, defined by Ef centred at the final state. Computing the maximal
inner-approximation of the backward-reachable invariant set to the sub-goal
region is formulated as an SoS program, and the resulting semi-definite program
(SDP) is numerically solved. As noted in [21], we observe that time-sampled
relaxations in the semi-definite program improve computational efficiency while
closely resembling the actual level-sets.

We pre-construct a library of funnels for quick online implementation due
to the computational infeasibility of computing such regions of invariance on-
the-fly. The funnel library L, consists of a finite number of verified trajectories,
encapsulating the information of the certified regions of invariance in finite-time
interval. Each funnel Fi ∈ L, is parametrized by the nominal trajectory x0i(t),
the ellipsoidal level-sets Ei(t), and the finite time horizon [0, Tfi].

The funnel library acts as a bridge between the offline and online phases—
invariant set analysis and motion re-planning. Therefore, certain algorithm pa-
rameters such as extend-distance ϵ, resolution of the planner, range of obstacle
sizes, etc. is considered while constructing the library. Meanwhile, the library
provides the vital information of compossibility required during the online phase
of motion planning. It is worth mentioning that the initial conditions of the fi-
nite number of projected trajectories in the library, with the appropriate shift
operator, Ψc(.) along the cyclic coordinates should be able to span the entire
C-space. This ensures probabilistic coverage [11] of the sampling-based motion
re-planning algorithm and hence, probabilistic completeness of our algorithm.

6 Experimental Validation

We validate our algorithm on a quadrotor UAV in simulations, flying through a
space with dynamic obstacles. We demonstrate the relevance of invariant sets and
empirically verify the completeness and correctness of our motion re-planning al-
gorithm. The equations of motion of a quadrotor UAV are derived using Newton-
Euler formulation. The system-states, x consists of position, orientation, linear
velocities, and body rates, with 4 rotor speeds as inputs.

The controller architecture has a cascaded structure, with a fast inner loop
stabilising the attitude and a outer loop tracking the position [25]. We imple-
ment a nested P-PID loop for attitude-tracking. Based on the desired angles,
the proportional controller computes the desired angular body rates which are
then tracked using a PID controller. The outer loop tracks the desired position
setpoints, and is achieved using an LQR controller. Equivalently, the inputs to
the quadrotor position controller are the desired setpoints − [xd, yd, zd, ψd = 0]T .

12 M.K.M. Jaffar and M. Otte

For a quadrotor in 3D environment, the configuration space C = R3, whereas
the state-space of the quadrotor translational subsystem is S = R3×R3, compris-
ing of the position and linear velocities. The mission profile is to fly at a set alti-
tude, zd = h with a zero heading-angle, ψd = 0. Owing to the reduced operation-
space, the workspace and the sampling is in R2. The equivalent closed-loop posi-
tion dynamics of the quadrotor is derived from repeated trials with various posi-
tion setpoints, ξd given as inputs to the system: ξ̇ = v, v̇ = f(ξ,v,u), u = ξd

An estimate of the required finite-time horizon, [0, T] is obtained based on
the time taken by the system to reach the defined goal region of 0.3m around a
desired setpoint. Subsequently, the invariant sets centered around the nominal
trajectory are constructed using the methods described in Section 5.3. The SoS
optimisation is converted to an SDP by Systems Polynomial Optimisation Tool-
box in MATLAB, and solved using SeDuMi [26]. In order to verify the motion
plans, we develop a higher fidelity model, additionally incorporating rotor dy-
namics, actuator saturations, and process noise. We believe these additions will
enable the simulation model to more closely resemble the physical system.

7 Results and Discussions

Our algorithm is tested through repeated trials in two scenarios — initially un-
known maze and dynamically changing random forest (Figures 4 and 3-c). The
performance metrics we evaluate are success rate and traversed trajectory length.
Any trial in which the robot collides with a (dynamic) obstacle, or does not find
a valid plan before a timeout is defined as a failure, i.e., not a success.

Initially-unknown Maze with finite-sensing: We design a maze with rect-
angular walls in a workspace of dimensions 50m × 50m. The robot is assumed
to have a limited sensing radius of 12m. 25 trials are run for each of 10 different
scenarios of start/goal configurations, resulting in 250 different trials. We only
use start and goal locations that are initially obstacle free. Under these condi-
tions, the robot was successful in all of our experimental trials, resulting in a
100% success rate across 10 different scenarios. Traversed-trajectory length had
high variability due to the fact that the presence or absence of obstacle-walls
in key locations could increase or decrease path length by many multiples. A
sample run of PiP-X in a user-specified maze environment is shown in Fig. 4.

The solution funnel-path to goal is input to the higher-fidelity simulation-
system in real-time, and the system’s actual trajectory is analysed. It is observed
that the system-trajectory lies within the solution funnel-path throughout the
course of the mission profile, verifying set-invariance. In another scenario with
different start/goal location, we examine the normalised Lyapunov function value
of the system. From Fig. 5-a, we notice that the trajectory stays within the
level-set boundary of V = 1 till the quadrotor-system reaches the goal region,
empirically proving invariance. The peaks in the Lyapunov function value mostly
occur in the outlet/inlet region between two funnels.

Funnel-based Online Feedback Motion Re-planning 13

Fig. 4. Time instances of motion plan executed by PiP-X on a quadrotor flying with
altitude-hold. The start configuration is in the lower-right corner, with the goal loca-
tion at lower-left corner. The quadrotor senses obstacle-walls (solid rectangles) within
sensor-radius (dashed circle), and recomputes motion plans (green funnel-path) accord-
ingly. The traversed funnel-path and funnel-tree are denoted by dark and light gray,
respectively. lT denotes the traversed-path length, and t denotes time elapsed.

Random Forest with dynamic obstacles: We consider a workspace of di-
mensions 50m × 50m with circular obstacles of random sizes in the range of
[2 4]m (see Figure 3-c). Dynamic tree-obstacles are deleted and added at ran-
dom. The changes occur anywhere in the workspace and the robot is capable
of sensing all such changes. A scenario is described by number of trees Nt, and
change-percentage C. For e.g., in a workspace with Nt = 45, C = 60% implies
27 pre-existing tree-obstacles are removed, and 27 new obstacles are added −
changing location and size. We run 25 trials (different starts and goals) for var-
ious combination of Nt and C. Values of Nt are varied over the range [5, 135]
in increments of 10, while C is varied from 0 to 100 in steps of 10, resulting in
3850 total trials. Mean results are depicted in the form of a contour plot, Fig. 5.
We observe that the algorithm failure and mean trajectory-length increases with
either increasing number of tree-obstacles, Nt ≥ 45, or higher level of changes,
C ≥ 50. It completely fails when the environment is densely cluttered with ob-
stacles or highly dynamic (upper right triangle of the contour in Fig. 5-b). Note
that trajectory-length in static environments (C = 0%) with Nt ≥ 95 is not
visualised in Fig. 5-c as they are isolated instances of algorithm successes.

Most of the failures we observe are due to (idleness) time-outs by which
our algorithm is not able to compute a solution. Success rate is 100% for easy

14 M.K.M. Jaffar and M. Otte

Fig. 5. (a) Normalised Lyapunov function value of system’s state simulated using the
higher-fidelity model, with solution funnel-path given by the algorithm across 10 sce-
narios (denoted by different line-colors) (b)-(c) Forest environment with dynamic ob-
stacles: mean of performance metrics from 25 trials for each grid-point in the contour

scenarios, and decreases with problem difficulty (Fig. 5-b,c). Indeed, this is a
common trait of sampling-based motion planning algorithms, in general. Another
common reason for failure is the algorithm’s inability to fit a volumetric region
of space in narrow gaps, especially in dense-cluttered environments. In scenarios
with highly-dynamic obstacles, an obstacle is more probable to appear on the
traversing funnel-edge, inevitably leading to a collision with the obstacle.

In most scenarios, our algorithm is able to compute motion plans and repair
them on-the-fly, ensuring a sequence of safe trajectories that are dynamically
feasible. The theoretical guarantee of set-invariance enables our algorithm to
rewire controllable motion plans, implicitly addressing the two-point boundary
value problem that is typically encountered during search-tree rewiring. Com-
puting a shortest-path tree of funnels rooted at the goal results in an optimal
funnel-path with respect to the iteratively-constructed underlying funnel-graph.

8 Conclusions

We present a novel online funnel-based motion re-planning algorithm, PiP-X,
which uses sampling-based techniques to iteratively construct a search-graph
that considers funnel-edges. The information of robot-traversability and funnel-
sequencibility is represented together in the form of an augmented directed-graph,

Funnel-based Online Feedback Motion Re-planning 15

that can be quickly rewired using incremental graph-replanning techniques. This
combination of systems analysis and control, sampling-based methods, and in-
cremental graph-search enables feedback motion re-planning for nonlinear robot-
systems in dynamic workspaces. Our method can be used to compute safe, con-
trollable motion-plans — and also to quickly and efficiently recompute them
on-the-fly as obstacles appear and disappear.

PiP-X ensures kinodynamic feasibility of the solution-paths by analysing and
formally quantifying stability of trajectories using Lyapunov level-set theory.
Verifying the compossibility of a funnel-pair is also a “relaxed” alternative to the
two-point boundary value problem, encountered in most single-query sampling-
based motion planners that require rewiring. Our technique is validated on a
simulated quadrotor platform in a variety of scenarios, including an initially
unknown maze and a dynamic forest environment.

Acknowledgements

The authors wish to thank the Robot Locomotion Group at MIT for providing an
open-source software distribution for computing funnels. This work is supported
by the grant N00421-21-1-0001 from Naval Air Systems Command (NAVAIR).

References

1. Jaffar, M.K.M., Otte, M.: PiP-X: Online feedback motion planning/replanning in
dynamic environments using invariant funnels. arXiv preprint arXiv:2202.00772
(2022)

2. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion
planning with moving obstacles. The International Journal of Robotics Research
21(3), 233–255 (2002)

3. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremen-
tal sampling-based methods. In: 49th IEEE conference on decision and control
(CDC), pp. 7681–7687. IEEE (2010)

4. Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query
path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), vol. 2, pp. 995–1001. IEEE (2000)

5. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE transactions on
Robotics and Automation 12(4), 566–580 (1996)

6. LaValle, S.M., Kuffner Jr, J.J.: Randomized kinodynamic planning. The interna-
tional journal of robotics research 20(5), 378–400 (2001)

7. hwan Jeon, J., Karaman, S., Frazzoli, E.: Anytime computation of time-optimal
off-road vehicle maneuvers using the RRT. In: 2011 50th IEEE Conference on
Decision and Control and European Control Conference, pp. 3276–3282. IEEE
(2011)

8. Webb, D.J., Van Den Berg, J.: Kinodynamic RRT*: Asymptotically optimal mo-
tion planning for robots with linear dynamics. In: 2013 IEEE International Con-
ference on Robotics and Automation, pp. 5054–5061. IEEE (2013)

16 M.K.M. Jaffar and M. Otte

9. Ravankar, A., Ravankar, A.A., Kobayashi, Y., Hoshino, Y., Peng, C.C.: Path
smoothing techniques in robot navigation: State-of-the-art, current and future chal-
lenges. Sensors 18(9), 3170 (2018)

10. Basescu, M., Moore, J.: Direct NMPC for post-stall motion planning with fixed-
wing UAVs. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 9592–9598. IEEE (2020)

11. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: Feedback
motion planning via sums-of-squares verification. The International Journal of
Robotics Research 29(8), 1038–1052 (2010)

12. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion
planning. The International Journal of Robotics Research 36(8), 947–982 (2017)

13. Verginis, C.K., Dimarogonas, D.V., Kavraki, L.E.: KDF: Kinodynamic motion
planning via geometric sampling-based algorithms and funnel control. arXiv
preprint arXiv:2104.11917 (2021)

14. Bajcsy, A., Bansal, S., Bronstein, E., Tolani, V., Tomlin, C.J.: An efficient
reachability-based framework for provably safe autonomous navigation in unknown
environments. In: 2019 IEEE 58th Conference on Decision and Control (CDC),
pp. 1758–1765. IEEE (2019)

15. Kousik, S., Vaskov, S., Bu, F., Johnson-Roberson, M., Vasudevan, R.: Bridging
the gap between safety and real-time performance in receding-horizon trajectory
design for mobile robots. The International Journal of Robotics Research 39(12),
1419–1469 (2020)

16. Herbert, S.L., Chen, M., Han, S., Bansal, S., Fisac, J.F., Tomlin, C.J.: FaSTrack: A
modular framework for fast and guaranteed safe motion planning. In: 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pp. 1517–1522. IEEE
(2017)

17. Singh, S., Landry, B., Majumdar, A., Slotine, J.J., Pavone, M.: Robust feedback
motion planning via contraction theory. The International Journal of Robotics
Research (2019)

18. Stentz, A., et al.: The focussed D∗ algorithm for real-time replanning. In: IJCAI,
vol. 95, pp. 1652–1659 (1995)

19. Koenig, S., Likhachev, M.: D∗Lite. Aaai/iaai 15 (2002)
20. Otte, M., Frazzoli, E.: RRTX: Asymptotically optimal single-query sampling-based

motion planning with quick replanning. The International Journal of Robotics
Research 35(7), 797–822 (2016)

21. Tobenkin, M.M., Manchester, I.R., Tedrake, R.: Invariant funnels around trajecto-
ries using sum-of-squares programming. IFAC Proceedings Volumes 44(1), 9218–
9223 (2011)

22. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for non-
linear systems with symmetries. IEEE transactions on robotics 21(6), 1077–1091
(2005)

23. Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite
time invariance. In: Algorithmic foundations of robotics X, pp. 543–558. Springer
(2013)

24. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning.
The international journal of robotics research 30(7), 846–894 (2011)

25. Jaffar, M.K.M., Velmurugan, M., Mohan, R.: A novel guidance algorithm and
comparison of nonlinear control strategies applied to an indoor quadrotor. In:
2019 Fifth Indian Control Conference (ICC), pp. 466–471. IEEE (2019)

26. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization methods and software 11(1-4), 625–653 (1999)

	PiP-X: Funnel-based Online Feedback Motion Planning/Replanning in Dynamic Environments

