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Abstract. When is heterogeneity in the composition of an autonomous
robotic team beneficial and when is it detrimental? We investigate and
answer this question in the context of a minimally viable model that
examines the role of heterogeneous speeds in perimeter defense prob-
lems, where defenders share a total allocated speed budget. We consider
two distinct problem settings and develop strategies based on dynamic
programming and on local interaction rules. We present a theoretical
analysis of both approaches and our results are extensively validated us-
ing simulations. Interestingly, our results demonstrate that the viability
of heterogeneous teams depends on the amount of information available
to the defenders. Moreover, our results suggest a universality property:
across a wide range of problem parameters the optimal ratio of the speeds
of the defenders remains nearly constant.

Keywords: Perimeter defense · Heterogeneous multi-robot team · Dy-
namic Programming.

1 Introduction

An increasingly important task, where a robotic system can be employed, is in de-
fending an area against external agents, which pose varying levels of threat. Ex-
amples include defending airports against intruding and flight-grounding drones
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[7], defending wildlife habitats against trespassing poachers [2], extinguishing
and preventing the spread of devastating wildfires caused by human or natural
activity [9], as well as military applications [14].

In general, solutions to perimeter defense problems allude to finding strategies
for a set of agents restricted to the perimeter of an area, entrusted with defending
the area from intruders which are trying to breach the perimeter of the area [17].

Compared to a homogeneous team of robots, a team of robots with vary-
ing capabilities (heterogeneous team) comes with its unique set of advantages
and challenges. Equipping different agents with different capabilities can lead to
synergy effects where the heterogeneous system outperforms the alternative ho-
mogeneous system composed of identical agents. As a result, in the last decade,
there has been significant interest in the robotics community to define, explore,
and quantify heterogeneity in different robot applications [20, 15, 12, 8, 13, 11].

This paper investigates the impact of heterogeneity in multi-robot teams for
the perimeter defense problem. We propose two optimal strategies, valid under
different assumptions. The first strategy is based on dynamic programming (DP)
[3]. It is optimal when the defenders are able to predict the location of the incom-
ing attacks, but suffers from the curse of dimensionality and therefore relatively
high associated computational costs. The second strategy is based on local inter-
action rules, and is optimal when the defenders have no information about the
incoming attacks. This strategy can be efficiently computed in an online fashion,
but does not implement any prior knowledge of the attack locations.

We prove the optimality of both strategies and analyze their time complexi-
ties. The algorithms are extensively validated on simulations. Our numerical ex-
periments are two-dimensional, but the majority of the theoretical results remain
valid for any dimension. This includes three-dimensional perimeters in applica-
tions involving drones, and higher-dimensional perimeters arising as constraint
sets in a state space of arbitrary dimension.

Our results show that heterogeneity is beneficial in the case where the defend-
ers have access to information about the incoming attacks, and is detrimental
when the defenders have no information about the attacks. Moreover, we show
the universality property that the optimal ratio of the speeds of the defenders
remains nearly constant for a two defender case setting.

Related work: Perimeter defense problems are a variant of pursuit-evasion
problems which have been studied extensively in literature. The seminal work
of Issacs delineates differential-game approaches to arrive at equilibrium strate-
gies for one pursuer one evader games [5]. There has been considerable effort
by researchers from various communities for solving various variants of pursuit-
evasion games involving multiple pursuers and evaders [21, 22, 4]. These papers
contain works that view pursuit-evasion games either from the pursuers’ side,
from the evaders’ side, or both. The curse of dimensionality poses a consid-
erable challenge in solving problems involving multiple pursuers and evaders.
The perimeter defense problem presented in this paper is a variant of the target
guarding problem first introduced by Isaacs [5]. In the target guarding problem
setting an agent is tasked with guarding an region of interest against an adver-
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Table 1: Notations

Symbol Description

X Perimeter
m Number of defenders
n Number of attacks
xi Location of defender i
vi Speed of defender i, ordered decreasingly
zj Location of attack j
tj Time of attack j, ordered increasingly
h Defender horizon
Opt(v, {(zj , tj)}nj=1) Minimum number of attacks the defenders can let through

sarial agent. Investigations on perimeter defense problems are in their nascent
stage. The review paper by Shishika and Kumar [17] delineates the recent works
done on multi-robot perimeter defense problems [16, 6, 19, 18]. Unlike the prob-
lems considered in these works, we consider a class of perimeter defense problems
in which the number of attackers is much larger than the number of defenders.

The remainder of the paper is organized as follows. Section 2 contains our
notation together with the problem statement. Sections 3 and 4 detail our theo-
retical results in the infinite and unit-time horizon cases respectively. Section 5
concludes with simulation results.

2 Problem statement

In this paper, bold letters are used to represent vectors and non-bold letters to
represent scalars. Calligraphic letters are used to represent sets, and |S| denotes
the cardinality of a set S.

For any positive integer n ∈ Z+, [n] denotes the set {1, 2, · · · , n}. For a
domain X with x1, x2 ∈ X , dist(x1, x2) denotes the length of the shortest path
between x1 and x2 contained inside X . As an example, in the case when X
denotes a circle of radius 1

2π

dist(x1, x2) =
1

2π
min (|θ1 − θ2|, 2π − |θ1 − θ2|) , (1)

where θ1, θ2 are the polar angles of x1 and x2, respectively.

2.1 Perimeter defense against point attacks

For ease of reference, the notation of this section is summarized in Table 1.
Our problem is perimeter defense against point attacks with mobile defenders of
varying speeds. Specifically, we have a perimeter X in d-dimensional space, with
a distance metric dist, defended by m mobile defenders with speeds v1, . . . , vm,
so that defender i at x ∈ X at time t can make it to x′ at time t′ iff

dist(x, x′) ≤ (t′ − t)vi (2)
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Without loss of generality we order the defenders from fastest to slowest, i.e.
v1 ≥ · · · ≥ vm, and we denote the speed vector as v = (v1, . . . , vm). Then n
attacks (zj , tj) ∈ X × R≥0, where zj is the location on X at which it happens,
and tj is the time; WLOG we order these by time, i.e. t1 ≤ · · · ≤ tn. Because
attacks happen at fixed locations and times, they cannot react to the positions
of the defenders.

x1
x2

xi

2vi

(zj, tj)

t

θ1
θ2

Attacker

Defender

θ = 0

Fig. 1: Three defenders facing three attacks, with the unit-time reachable sets
for each defender shown. Note that the third dimension is time; if the attack
represents a physical object it is approaching from somewhere outside the circle,
but we are only concerned with where and when it will hit the perimeter. In this
example the defenders are not allowed to leave the perimeter, so the size of the
reachable set scales linearly with speed (until it covers the whole perimeter).

An attack (zj , tj) is thwarted if and only if a defender is present, i.e. there
is some defender i at zj at time tj ; otherwise, we say that the attack breaches
the perimeter. The goal is to design a policy for the defenders that minimizes
the number of attacks that breach the defenses, and to study the effectiveness
of different defender speed combinations against attacks.

Additionally, the team of defenders has a horizon h under which they can
see attacks: specifically, at time t, any attack (zj , tj) is known to the defenders
if and only if tj ≤ t+ h. We will study in particular the unit horizon h = 1 and
the infinite horizon h = ∞ (all attacks are visible from the start).

Finally, the defenders are allowed to start at t = 0 at any combination of
locations in X ; they are even allowed to choose their starting locations based on
the attack sequence (up to horizon h).

Given a speed vector v and sequence of attacks {(zj , tj)}nj=1, we define
Opt(v, {(zj , tj)}nj=1) as the minimum number of attacks from {(zj , tj)}nj=1 that
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defenders of speed v can let through (with all attacks known). In some cases we
will be dealing with Opt(v, {(zj , tj)}nj=1) for one sequence of attacks {(zj , tj)}nj=1

over many defender speed vectors v; in that case we write Opt(v) for convenience.

2.2 Different settings

Within the above problem description, there are several different variations,
mostly to do with how the attacks are generated and the length of the horizon
h. We roughly divide attack sequences into two settings:

1. Any sequence of attacks (zj , tj) is legitimate.
2. Attacks must come at unit time intervals, i.e. tj = j for all j ∈ [n].

Note that in setting 2 we do not lose any generality by having the attacks happen
at unit time intervals, since we can rescale the time units (and adjust the speeds
of the defenders accordingly). Since the index j is superfluous in setting 2 we
refer to the sequence of attacks as z1, z2, . . . , zn, indexed by t.

In setting 1, we study the case where all attacks are known to the defenders
at the start; our primary problems are (i) find an algorithm for the defenders’
movements that minimizes the number of breaches, and (ii) study the behav-
ior of optimal defense against uniformly-random attacks (in both location and
time) for different combinations of defenders. Since setting 1 is more general, the
algorithms will also apply to setting 2.

In setting 2, we study the case where the attacks are (i) generated uniformly
at random in location (time is fixed) and (ii) generated by an adversary which
wants to guarantee a breach with as few attacks as possible. We also consider
both the case where all the attacks are known to the defenders at the start
(h = ∞) and the case where attack t only becomes known at time t− 1 (h = 1).

Remark 1. Here we deal with the case where the number of defenders is fixed,
and the question is how fast to make each defender (and in particular whether
to make them all the same speed or not). The alternative case of varying the
number of defenders is investigated in the arxiv version of this work [1], especially
in regards to the tradeoff between fewer and faster defenders versus more and
slower ones.

3 Infinite Horizon Theoretical Results

3.1 Dynamic programming with infinite horizon

We now give an algorithm which, given defender speeds v = (v1, . . . , vm) and
attacks {(zj , tj)}nj=1 returns two things: (i) Opt(v, {(zj , tj)}nj=1) (the minimum
number of attacks that can be let through); and (ii) the list (of lists) ℓ =
(ℓ1, . . . , ℓm), where ℓi is the (sub)sequence of attacks which defender i should
thwart. We refer to ℓ as a defense plan.

Recall that by default the attacks are sorted in order of arrival time (or the
user should sort them before applying the algorithm).
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Fig. 2: Computing f(6, 2, 4) (defender 1 has to thwart attack 6, etc.) recursively;
each defender is allowed to thwart attacks prior to these, but not afterwards.
Since 6 is the maximum value, we consider the last attack that defender 1 can
handle before 6: based on its speed, it can be 0 (defend nothing before 6), 1, or
3. Thus f(6, 2, 4) = min(f(0, 2, 4), f(1, 2, 4), f(3, 2, 4))− 1.

The pseudocode is given in Alg. 1, in which we use the following notation:
j = (j1, . . . , jm) ∈ {0, 1, . . . , n}m denotes a vector of attacks assigned to each
defender (with ji = 0 indicating no attack assigned to defender i, and we allow
the ji’s to be non-distinct even though it is redundant);

j−i(j
′) = (j1, . . . , ji−1, j

′, ji+1, . . . , jm) (3)

i.e. j with the ith entry replaced by j′;

1i(j
′, j′′) :=

{
1 dist(zj′ , zj′′) ≤ (tj′′ − tj′)vi

0 otherwise
(4)

is the indicator that defender j is capable of thwarting attack j′′ after thwarting
j′ (and 1i(0, j

′′) = 1 since defenders can start anywhere); [·] + [·] denotes con-
catenation (of lists); and argmin (argmax) denote the sets of values minimizing
(maximizing) the arguments. The for-loop in Alg. 1 iterates in lexicographic
order, skipping f(0, . . . , 0) (which is already known) so the recursion can work.

The proof of the following result is in the arxiv version of this work [1]:

Theorem 1. Alg. 1 outputs the correct value of Opt(v, {(zj , tj)}nj=1) and ℓ.

Alg. 1 depends on the function f(j) : {0, 1, . . . , n}m → N, which denotes the
following: suppose that defender i (with speed vi) is required to thwart attack ji
and then no others after that (but defender i can thwart attacks arriving before
tji , and if ji = 0, then defender i is not allowed to thwart any attack); f(j) is the
minimum number of defenders that can be let through under these constraints.
Then the following hold:

– f(0, . . . , 0) = n (the base case from which we recursively compute f);
– Opt(v, {(zj , tj)}nj=1) = minj f(j) (this allows us to extract the correct value

by keeping track of this minimum).
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It then recursively computes f(j) for all j ∈ {0, 1, . . . , n}m; see Figure 2 for an
example and the arxiv version [1] for the details.

Algorithm 1: Dynamic programming for infinite horizon defenders.

Data: Attacks {(zj , tj)}nj=1 ; defender speeds v = (v1, . . . , vm)
Result: Opt(v, {(zj , tj)}nj=1)

1 f(0, . . . , 0) = n, c = n, jmin = (0, . . . , 0); /* initialization */

2 for j ∈ {0, 1, . . . , n}m do /* compute f */

3 S = argmaxi {ji}; /* S is the set of those i that minimize ji */

4 Choose any i∗(j) ∈ S;
5 Choose any j∗(j) ∈ argminj′

{
f(j−i∗(j)(j

′)) : j′ < ji∗(j) and1i∗(j
′, ji∗(j))

}
6 if |S| = 1 then
7 f(j) = f(j−i∗(j)(j

∗(j)))− 1

8 else
9 f(j) = f(j−i∗(j)(j

∗(j)))

10 end
11 if f(j) < c then
12 c = f(j), jmin = j
13 end

14 end

15 ℓ = (ℓ1, . . . , ℓm) = ([jmin
1 ], . . . , [jmin

m ]); /* initialize defender lists */

16 jcurr = jmin

17 while jcurr ̸= (0, . . . , 0) do /* reconstruct defender lists */

18 if j∗(j) ̸= 0 then
19 ℓi∗(j) = [j∗(j)] + ℓi∗(j); /* add j∗(j) to front of list */

20 end
21 jcurri∗(j) = j∗(j)

22 end

23 return Opt(v, {(zj , tj)}nj=1) = c, ℓ

Remark 2. Alg. 1 relies on the subtle point that i∗(j) ∈ argmaxi ji because if
not, then we do not know whether to subtract 1 when we do the update; by
setting i∗(j) ∈ argmaxi ji, we remove the question of whether a defender i′

assigned to a later ji′ can also thwart attack ji∗ .

Remark 3. Alg. 1 assumes that the defenders can start at whatever locations
they want, but can be modified for fixed defender starting locations (or a set
of possible starting locations) by redefining 1i(0, j) to indicate whether they
can reach attack j from their starting locations. It can also be modified for the
important case where attacks cause varying amounts of damage, with attack j
doing wj damage (should it not be intercepted); see for instance the Iron Dome
missile defense system, which prioritizes attacks based on potential damage es-
timates [14]. To make this modification, replace −1 with −wji∗(j)

in line 7 and
f(0, . . . , 0) = c = n with f(0, . . . , 0) = c =

∑
j wj .

Given m defenders and n attackers, the number of computations needed to
run Alg. 1 is on the order of (n+1)m+1 (we need to run through (n+1)m values
of j, and each update takes up to n time for the comparisons).
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3.2 Monotonicity-based computational acceleration

In order to investigate team heterogeneity, we compute Opt(v, {(zj , tj)}nj=1) for

all v whose elements vi are at g evenly-spaced locations in a range (vmin, vmax].
6

We refer to g as the number of grains. If we were to run Alg. 1 for all combinations
v of speeds, the complexity becomes O((n + 1)m+1gm), which gets extremely
large very quickly.

However, as each attack sequence is evaluated on all v, we can take advantage
of the monotonicity of Opt over v to reduce the amount of computation needed.

In particular, for any sequence {(zj , tj)}nj=1,

v ≤ v′ =⇒ Opt(v) ≥ Opt(v′) (5)

since faster defenders can always emulate slower ones and thus achieve (at least)
as good a result on any attack sequence. This means that

Opt(v) = Opt(v′) = k for some v ≤ v′ (6)

=⇒ Opt(v′′) = k for all v ≤ v′′ ≤ v′ . (7)

Thus we know Opt(v′′) = k for a range of v′′, without having to run Alg. 1.
Taking the set of values v ∈ (vmin, vmax]

m (of given grains), for any {(zj , tj)}nj=1

we can evaluate Opt(v, {(zj , tj)}nj=1) in a strategic order to minimize the number
of times we need to run Alg. 1. This is discussed in greater detail in the arxiv
version of this work [1].

4 Unit Horizon Theoretical Results

This section considers defenders with a unit horizon of incoming attacks. The
general setup is

– We consider two defenders with speeds v1 ≥ v2.
– We consider a perimeter X homeomorphic to S1 (a circle7), with distances

determined by arc length and total length normalized to 1; we represent
X = [−1/2, 1/2] (but −1/2 and 1/2 are the same point). To denote this
situation, we define the distance function

dist(y1, y2) = min
{
|y1 − y2|, 1− |y1 − y2|

}
(8)

(a rescaled version of (1)). The maximum possible value of dist(y1, y2) is
1/2, and we assume they start at maximum distance from each other, i.e.,
at antipodal points.

– The n attackers are generated according to Setting 2 from Section 2.2: at-
tacker t appears at time t, uniformly (and independently) over X .

6 For instance, if g = 5 and (vmin, vmax] = (0, 1], we measure v where vi ∈
{0.2, 0.4, 0.6, 0.8, 1} for all i.

7 We consider this case because it has a number of nice symmetries, and because
perimeters enclosing a simply-connected 2D area are homeomorphic to S1.
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– The defenders have a unit horizon in time: at any given time they only see
the next incoming attack, though they also know n and the current time t.

Therefore the defenders’ policy can be thought of as a sequence of decisions taken
at unit time intervals (i.e. when the next attack is revealed), which is naturally
formulated as a Markov Decision Process (MDP) [10] with n steps, with the
reward being the number of thwarted attacks.

To simplify the MDP we can remove one state variable since, by symmetry, we
can rotate X (or relabel it) so that at the beginning of any time step, defender
1 is at location 0. We can also reflect it so that defender 2 is on the positive
half. Thus the state at time t (just before the location of the next attack is
revealed) can be denoted by a single parameter a(t), indicating the distance
between the two defenders. Then the next attack’s location x(t+ 1) is revealed,
in the coordinate system relative to the defenders’ positions.

4.1 Policy and Reward

A unit-horizon policy is a function f : [0, 1/2] × [−1/2, 1/2] → [0, 1/2]. The
inputs are a(t), x(t) and the number of remaining attacks, and the output is
f(a(t), x(t)) = a(t+1). As described above, a(t+1) is the distance between the
two defenders at time t+ 1. f must satisfy the condition

f(a(t), x(t)) ∈ [a(t)− v2 − v1, a(t) + v2 + v1] (9)

The policy then produces a reward

r(t) := r(a(t), x(t), f(a(t), x(t))) ∈ {0, 1} (10)

the reward, based on whether the given movement makes it possible for the
attack to be thwarted (r(t) = 1 if so, = 0 if not). r(t) is given as follows:

r(t) =


1 if dist(0, x(t)) ≤ v1 and [dist(x(t), a(t))− v2,dist(x(t), a(t)) + v2]

1 if dist(a(t), x(t)) ≤ v2 and f(a(t), x(t)) ∈ [x(t)− v1, x(t) + v1]

0 otherwise

The reason for this is that by symmetry (of the perimeter and of the attacks),
given the distance a(t+ 1) = f(a(t), x(t)) between the defenders at the start of
the next step, the ability of the defenders to stop future attacks does not depend
on their locations. Thus, if the defenders can stop the current attack and end
at distance a(t+1) = f(a(t), x(t)) for the next step, this is always preferable to
ending at the same distance without making the capture.

Hence r(t) = 1 under policy f if and only if this is possible, which can be
split into two cases: (i) defender 1 makes the capture; (ii) defender 2 makes the
capture. If either of these are feasible, r(t) = 1; if neither are, r(t) = 0.

Remark 4. If dist(a(t), x(t)) > v2 and dist(0, x(t)) > v1, this means that neither
defender can reach the next attack and hence r(t) = 0 no matter what.
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4.2 Optimal defender policy

Fix a defender policy f . For a given total number N of incoming attacks and
an initial distance a between the two defenders, we define the expected reward
J(a;N) of the defenders as the expected total number of thwarted attacks, i.e.,

J(a;N) := Ex

[
N−1∑
t=0

r(t)

]
under policy f, (11)

where the expectation is over the attack locations x(t). With this definition, we
are interested in determining the policy f that leads to the highest expected
reward. We show in our arxiv version [1] that for a wide range of values for
v1, v2 and N , the optimal strategy should (i) always thwart the currently-known
if possible. We next prove that the optimal policy subsequently should (ii) always
maximize a(t) subject to the first constraint. That is:

Proposition 1. f∗ maximizes J(a;N) if (ii) a(t+1) is maximized for all inputs,
over all policies that satisfy (i) (i.e. capture when possible).

We next show necessary and sufficient conditions for perfect defense, i.e.
when no (fixed-time) attack sequence can force a breach.

Theorem 2 (The perfect defense theorem). For any pair of defenders with
speeds v1, v2 where v2 ≤ v1, there exists a sequence of attacks that breaches if
and only if v1 < 1/2 and v1+3v2 < 1. Furthermore, if v1 ≥ 1/2 or v1+3v2 ≥ 1,
the defenders can defend indefinitely even with a one-step horizon. Furthermore,
if any sequence of attacks guarantees a breach, there is a sequence of at most 6
attacks that does so.

Both proofs are given in the arxiv version of this work [1].

5 Simulation Results

We conduct simulations for each of the settings from Section 2.2. Our experi-
ments are run as follows:

1. Generate attacks {(zj , tj)}nj=1 randomly, either with fixed attack times tj = j
or uniformly-random attack times in [0, tmax].

2. Compute Opt(v, {(zj , tj)}nj=1) for v ∈ (vmin, vmax]
m, at g intervals.

3. Repeat the above for T trials and average the resulting values for each v.

We conduct all of our experiments on a circular perimeter of circumference
1, where the defenders are not permitted to leave the perimeter (so maximally
distant points are at opposite ends and have distance 1/2). Comparison of the
results sheds light on the conditions which favor heterogeneous defender teams
and those which favor homogeneous teams and/or single super-defenders.
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Table 2: Parameters of the experiments

Symbol Description

m Number of defenders (m = 2 unless specified otherwise)
n Number of attacks
T Number of trials
tmax Size of attack window (not needed for heterogeneous setting (ii))
(vmin, vmax] Range of defender speeds (inclusive of vmax but not vmin)
g Number of speed values measured (grains) within (vmin, vmax]

The structure of the simulations means each combination of defender speeds
is evaluated on the same set of attack sequences, which makes the compari-
son fairer, and allows us to significantly speed up the computation when eval-
uating Opt(v, {(zj , tj)}nj=1) for many values of v on a single attack sequence
{(zj , tj)}nj=1, by exploiting the fact that Opt is a monotonically-decreasing step
function in v (as described in Section 3.2).

The full list of parameters is given in Table 2.

5.1 Simulation Results

In Figure 3, we simulate sequences of n = 25 attacks of both settings, where the
perimeter X is a unit circle of circumference 1 andm = 2 defenders; for uniformly
random attack times we set tmax = 25 to get the same density of attacks in both
cases. This is analyzed over the speed range (vmin, vmax] = (0, 0.6] with g = 256
grains. The left column shows results for uniformly-random attack times; the
right column shows results for fixed attack times.

The results are given as surface plots, taking defender speeds v1, v2 and re-
turning Opt(v1, v2) (ignoring the assumption in the analysis that v1 ≥ v2, so the
plots are symmetric about the line v1 = v2). We give:

– Top row: Opt(v1, v2) for a single sequence of attacks. This can be viewed
as T = 1, and is meant to give a visualization of how adjusting the speeds
of the defenders changes the ability to defend against a particular sequence.
Since Opt(v1, v2) takes integer values, we have a monotonically-decreasing
step function.

– Middle and bottom rows: Opt(v1, v2) when averaged over T = 200
randomly-generated attack sequences. Middle row gives the front view to
show overall shape; bottom row gives the back view to show the ridge at
v1 = v2. This ridge, which appears for both uniformly-random attack times
and fixed attack times, shows that on average homogeneous defenders are
less efficient (per combined speed) than heterogeneous defenders.

From this we can make a number of interesting observations:

– Opt(v1, v2) is generally larger for the uniformly random attack times, as
attacks which are close together in time are much harder to defend. In par-
ticular, with fixed attack times Opt(v1, v2) = 0 for sufficiently large defender
speeds (one defender of speed 1/2 is already sufficient to defend all attacks).
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Fig. 3: 2 defenders evaluated at g = 256 grains for speeds (vmin, vmax] = (0, 0.6]
for 200 trials. Top row: 1 trial, front view. Middle row: 200 trials, front view.
Bottom row: 200 trials, back view, showing the ‘ridge’ at the center line v1 = v2
(both attack types). Left: Uniformly-random attack times, n = 25, tmax = 25;
Right: Fixed attack times, n = 25.

– As mentioned, there is a ridge on v1 = v2 (the back view makes it clearly
visible). This shows that on average, homogeneous defenders are less effective
than well-designed heterogeneous ones.

– Under uniformly-random attack times, each ‘half’ (cutting at the v1 = v2
line) is empirically convex, while under fixed attack times, each ‘half’ is
convex near the v1 = v2 ridge but becomes concave again near the edge of
the plot (as seen in the back view) and as the defender speeds increase (as
can be seen on the edge in both views).
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We also consider the question: what is the optimal mix of defender speeds? To
answer this, we need to consider what we want to hold constant, since obviously
faster defenders are always better; an obvious starting point is to look at defend-
ers of a fixed total speed, and consider what ratio of speeds performs the best.
This also means that we are comparing defender teams whose reachable sets are
of equal total size (ignoring overlaps), and (because we evaluate over a grid of
possible values of v) means we compare the values of Opt(v) on a diagonal line.

In Figure 4, we show the best (empirical) mixture: for each value of vtot =
v1 + v2, the returned value is

v∗2
vtot

where v∗2 := argminv2≤vtot/2Opt((vtot − v2, v2)) (12)

That is, given a total speed of vtot, what is the optimal fraction of the speed
‘budget’ to assign to the slower defender? A value of 0.5 signifies homogeneous
defenders are best; a value of 0.0 signifies that a single super-defender is best;
and a value in between signify some heterogeneous mix of defenders is best.

Fig. 4: Empirical optimal ratio v2/vtot, for various values of vtot. Left: Uniform
attack times. Right: Fixed attack times.

These are based on the same experiments as shown in Figure 3. Note that
the fixed attack times graph ends at vtot = 0.5; past that, both one single
super defender and homogeneous defenders will defend perfectly, so measuring
the minimum no longer makes sense. However, it is striking that the benefits of
a heterogeneous team persist so close to that threshold, and the optimal ratio
remains relatively stable over a wide range of speed ‘budgets’ in both settings.

Computational complexity of simulations: The results of the monotonicity-based
computational acceleration discussed in Section 3.2 can be seen in Figure 5,
corresponding to the simulations shown in Figure 3. As before, the left-hand
column is the results for uniformly-random time attacks, and the right-hand
column is the results for fixed time attacks, while the top row represents a single
trial (corresponding to the top row of Figure 5) and the bottom row correspond
to the average of T = 200 trials.

Each square is a 256×256 grid, representing the 2562 combinations of speeds
v for which we want to compute Opt(v); the shade of a given point represents
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the fraction of times Alg. 1 had to be run on for that specific v (as opposed to
being known already by monotonicity), running from yellow (Alg. 1 never run)
to purple (Alg. 1 run). Note that because they represent a single trial (each),
every point in the top two graphs takes a value of either 0 or 1.

We note a few things: (i) the savings increase strongly where E[Opt(v)] is
flatter (this is expected since ∇vE[Opt(v)] corresponds to the probability that
there is a step at v, and having a step nearby means the condition is less likely
to be satisfied); (ii) there are darker points at regular intervals (such as in the
center), which correspond to the combinations which are evaluated earlier.

Even with m = 2 and the strategic use of monotonicity, which can save up
to about 95% of the running time, this can get big fairly quickly.

Fig. 5: Monotonicity savings for the trials depicted in Figure 3. Uniformly-
random attack times on the left, and fixed attack times on the right. Axes
labeled by position in the vector of possible speeds (0 to g − 1). Top row is for
one trial (corresponding to the single trials shown in Figure 3) and bottom is
average over 200 trials.

5.2 Simulations for unit horizon

Simulation results for the case of two defenders on a circular perimeter with
unit horizon are shown in Figure 6. Note that in this case, heterogeneity is not
beneficial, it is even detrimental. The optimal speed allocation is to assign the
entire speed budget to one defender or split it equally.
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Fig. 6: Unit-horizon case, 2 defenders evaluated at g = 128 grains for speeds
(vmin, vmax] = (0, 0.5] for 10000 trials and n = 25 attacks. Left: back view, note
the lack of the ‘ridge’ seen in Figure 3. Right: front view.

6 Conclusion

We introduced and studied a minimal model to map out how and why hetero-
geneity in robotic teams affects performance in perimeter defense applications.

On the one hand, we showed that a heterogeneous team achieves better per-
formance when full information of the oncoming attacks is available to the de-
fenders. Moreover, we uncovered a seemingly universal behavior, where the ratio
of optimal defender speeds is nearly constant for a range of problem parameters.

On the other hand, we proved that heterogeneity is detrimental to the sys-
tem’s performance in the converse case where minimal attack information is
available. These results suggest that heterogeneity is potentially a non-robust
property, since less system information dramatically decreases its usefulness.

Future directions involve quantifying and studying the use of heterogene-
ity when intermediate levels of information are available to the defenders. This
would explore the existence of a phase transition where heterogeneity changes
from decreasing to improving system performance. Possible scenarios include
varying the horizon length of incoming attacks between the cases of 1 and ∞
considered in the paper. Another scenario augments the unit time horizon with
the knowledge of the number of remaining attacks. In particular, we conjecture
that even in this case defenders should always capture attacks if possible and
that heterogeneity remains detrimental. Lastly, we wish to perform numerical
simulations for a larger number of defenders.
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