
Decentralized Robot Swarm Clustering: Adding
Resilience to Malicious Masquerade Attacks

Mitali Gandhe1 and Michael Otte2

1 Georgia Institute of Technology, Atlanta, GA 30332
2 University of Maryland, College Park, MD 20742

Abstract. We compare the resilience of four distributed robot swarm
clustering algorithms to masquerade attacks launched from malicious
robots within the swarm. The clustering algorithms are distributed vari-
ants of DBSCAN and k-Means that have been modified for use on a
distributed robot swarm that only has access to local communication
and local distance measurements. We subject these distributed variants
of k-Means and DBSCAN to malicious masquerade attacks and observe
how clustering performance is affected. We then modify each variant to
include a distributed Intrusion Detection and Response System (IDRS)
to detect malicious robots and maintain the swarm’s integrity despite
an attack. We evaluate all four variants both in simulation and in a
hardware testbed containing a swarm of 25 Kilobot robots. We find that
centralizing data within the swarm makes the swarm more vulnerable
to malicious attacks, and that distributed IDRS relying on local mes-
sage passing can effectively identify malicious robots and reduce their
negative effects on swarm clustering performance.

1 Introduction

Swarm robotics is a rapidly developing field with far-ranging applications in-
cluding disaster relief, environmental monitoring, and defense [6]. In such a dis-
tributed network, individual robots act upon their perceived environment and
incoming communication, which present vulnerabilities that malicious attackers
may exploit. Therefore, developing security systems is crucial to ensuring safe
real-world applications of swarms [8, 16].

Swarm algorithms are typically decentralized to eliminate single points of fail-
ure and distributed to leverage the sensors, actuators, and computation across
many robots. The hardware swarms may contain many robots (10s, 100s, 1000s,
etc.), and so robot swarm algorithms should be scalable, retaining functionality
even if the number of robots in the swarm changes by orders of magnitude. Local
communication involves message passing between neighboring robots, whereas
global communication allows message passing from any robot to any other robot.
Most swarm algorithms use local communication to avoid communication band-
width saturation as swarm size increases. Though a global positioning system
(GPS) can use either local or global communication, many important problem

2 Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks

Swarm Clustering Malicious Hacking Resilient Clustering

Kilobot Swarm Used in Hardware Experiments
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Distributed
Swarm k-Means

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Distributed
Swarm DBSCAN

Fig. 1. Top: We evaluate the resilience of distributed swarm clustering algorithms to
malicious masquerade attacks (center), and implement security measures to protect
the swarm (right). Color overlays indicate robot clusters, and malicious robots are
outlined with red circles. Right: Variants of the k-Means (Left) and DBSCAN (Right)
algorithms modified for use by swarms using local communication and positioning.
Bottom-Left: Hardware experiments are run on a swarm of 25 Kilobots.

domains lack GPS data, e.g., environments that are underground, underwater,
or extraterrestrial—as well as GPS-denied adversarial scenarios.

We develop and analyze two distributed swarm clustering algorithms. Clus-
tering is the process of dividing objects into groups based on like qualities,
where objects with similar features are placed in the same cluster and objects
with dissimilar features are placed into different clusters [19]. Distributed clus-
tering algorithms allow the swarm to determine position and orientation data
by establishing a local coordinate system [16]. Clustering a swarm’s robots into
groups based on proximity helps analyze the swarm’s topology, and may serve
as a pre-processing step for swarm behaviors such as sub-team formation, task
division, geometric analysis, data aggregation, and information distribution.

However, the distributed process of clustering robots into groups presents an
opportunity for a malicious robot to hijack the swarm (Figure 1-top). If a robot
was tampered with before programming or captured and returned to the swarm,
existing security such as encryption may not protect the swarm [2]. As a result,
the swarm may be vulnerable to a masquerade attack: an insider attack intended
to disrupt the outcome of the algorithm. We develop a masquerade attack that
exploits weaknesses of the two distributed clustering algorithms.

Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks 3

To discuss the security of robot swarms, we borrow inspiration and vocabu-
lary from the well-studied field of security in decentralized networks. An Intru-
sion Detection System (IDS) identifies adversaries and an Intrusion Response
System (IRS) counteracts the effect of the adversaries [6, 17]. An Intrusion De-
tection and Response System (IDRS) does both.

In this paper we adapt two clustering algorithms, k-Means and
DBSCAN (density-based spatial clustering of applications with noise),
to suit a decentralized robot swarm operating in scenarios without
global communication and without global position data. Next, we de-
sign masquerade attacks that take advantage of natural vulnerabilities
in these algorithms. Finally, we create new variants of the algorithms
that have IDRS designed to detect such attacks. The main contribu-
tion of this paper is an evaluation of whether or not—and to what
extent—a decentralized IDRS can improve robot swarm clustering
performance by detecting and neutralizing malicious robots.

This paper is organized as follows. Section 2 discusses related work. Section 3
outlines notation and formal problem statements. Sections 4 and 5 present dis-
tributed swarm clustering algorithms (DBSCAN and k-Means, respectively),
masquerade attacks against them, and resilient variants with IDRS. Section 6
describes experiments run in hardware testbeds and in simulation to evaluate
the algorithms’ resilience to the masquerade attacks. Section 7 details our results
and Section 8 contains our conclusion.

2 Related Work

The originial k-Means [10] and DBSCAN [9] algorithms were developed in the
1960s and 1970s. Recent variants take advantage of distributed computing [11, 5]
including over peer-to-peer, wireless, and ad hoc networks [21, 20]. Work has been
done to ensure the privacy of the data being clustered by such algorithms [13,
1]. Existing distributed approaches seek to leverage the computation of multiple
computers while minimizing communication between them. In contrast, we ex-
plore the distributed swarm clustering problem, in which each robot administers
a single data point—its own location—and clustering is the result of an emergent
process that uses continual local message passing between neighboring robots.
As a result, our algorithms are implemented to suit swarm-specific constraints,
including message dropping, finite bandwidth, restricted space overhead, and
limited computational power.

McCune and Madey perform simulations of an ant-inspired pick-up, carry,
and drop algorithm for resource aggregation they call “Decentralized k-Means
Clustering” drawing a parallel between k base stations (cluster centers/ant nest),
mobile agents (transport nodes/ants), and stationary sensors (resources, food)
[12]. The contrasting metaphor that applies to our work is that robot locations
are data points—and the objective is to find k cluster centers (also robots) that
divide the swarm into proximity based sub-teams.

4 Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks

The k-medians algorithm is closely related to k-Means [18, 3]. Previous work
has defined the distinction between the two as follows: k-Means minimizes the
sum of L2 norms over all nodes to their corresponding cluster’s center, whereas k-
medians minimizes the corresponding sum of L1 norms. In contrast, the swarm al-
gorithms that we investigate use the graph distance metric as defined as summed
distance through/along the communication network (and not through the Eu-
clidean space in which the graph is embedded). The graph distance metric is
useful for robot swarms because it can be calculated using only local communi-
cation and local distance measurements.

Existing work also identifies threats to the swarm [6, 7]. In one example, Gil
et al. use radio signatures to detect when an adversarial robot generates fake
identities to gain influence within the swarm, a technique known as spoofing
[4]. They show that robots equipped with appropriate sensors can help iden-
tify malicious robots by their hardware signature. We differentiate the spoofing
attacks Gil et al. study (in which an adversary generates fake identities) from
masquerade attacks (in which an adversary generates fake data), and develop an
intrusion detection system to identify the latter.

In contrast to past work on distributed clustering algorithms, our research
focuses on how adversarial robots can influence the clustering algorithm’s behav-
ior, and to what extent a distributed IDRS can provide resilience to malicious
actors. A preliminary non-archival poster of this work was presented at the IEEE
International Symposium on Multi-Robot and Multi-Agent Systems in 2021.

3 Notation & Problem Statements

The robot swarm S = {r1, . . . , rn} contains n robots with unique IDs 1 . . . n. Let
dij denote the distance between robots ri and rj . We assume that if robot ri can
communicate with rj then rj can determine dij . We do not require robots to
know their global positions. The distance between two neighboring robots can
be determined without global positions, for example, by observing message time
of flight or received signal strength. The communication graph over the swarm
is G = (V,E), where we abuse our notation by letting robots represent their
(own) respective nodes in the node set V ≡ S = {r1, . . . , rn}. The existence of a
directed edge (ri, rj) ∈ E indicates that robot ri can communicate with rj .

While communication between robots in the real world is generally nonsym-
metric, it is algorithmically convenient to impose symmetry in the communica-
tion graph such that (ri, rj) ∈ E ⇐⇒ (rj , ri) ∈ E. This can be done by having
robot rj drop messages received from robot ri whenever dij is greater than a
user defined threshold distance d, i.e., such that the human user knows a swarm’s
communication hardware will reliably send/receive messages closer than d. Let
dmax be the maximum distance a robot can ensure bidirectional communication.
Thus, a symmetric d-disc communication graph can be achieved by having robot
rj accept messages from robot ri only if dij = dji ≤ d for d ≤ dmax.

Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks 5

Let Ed = {(i, j) | dij ≤ d} be the set of all edges of length d or less. Define
Gd = (V,Ed). Having robots drop messages as described above, guarantees

((ri, rj) ∈ Ed) ∧ (d ≤ dmax) =⇒ ((rj , ri) ∈ Ed)

In other words, robot rj can infer that if it accepts a message from ri then the
sender will accept messages from rj in return. Cluster membership is determined
based on the topology of the d-disc communication graph Gd.

3.1 Attack & IDRS Model

Existing work defines a masquerade attack as an insider attack that generates
fake data to target specific weakness of an algorithm [2]. By tampering with a
member of the swarm or intercepting messages, a malicious agent can infer ba-
sic information about the algorithm structure and message content. We design
attacks to disrupt the swarm’s emergent behavior in the simplest and most effec-
tive manner possible. These attacks are intended to simulate more sophisticated
attack models.

Similarly, our IDRS is a prototype for more sophisticated anomaly-based
intrusion detection. Higgins et al. note that responding to masquerade attacks
often requires IDRS tailored to the specific mechanism of attack [6]. Therefore,
we implement the simplest effective IDRS that will counter the attack, in order to
analyze how an intrusion detection system interacts with the emergent behavior
of robotic swarms. The attack and IDRS functionalities are encapsulated in the
code description to capture this idea.

3.2 Formal Problem Statements

We now define the swarm clustering and hacking problems.
Problem 1. Distributed Swarm Clustering: Given a swarm of n robots that com-
municate locally, the swarm must collectively divide itself into mutually exclusive
clusters based on robot’s relative proximity such that robots within a particular
cluster are closer to other robots in their own cluster then they are to robots in
the other clusters.
Problem 2. Swarm Clustering Masquerade Attack: Given a swarm of n robots
that communicate locally and that is attempting to solve Problem 1, one or more
malicious robot(s) must cause the swarm to find a lower quality solution (or
prevent the swarm from finding any solution) by injecting incorrect data into the
distributed algorithm–but not by simply disrupting communication. A notable
element of Problem 2 is that the malicious robots seek to alter the outcome of
the swarm algorithm instead of simply blocking communication.
Problem 3. Resilient Swarm Clustering: Given a swarm of n robots that com-
municate locally and that are solving Problem 1, as well as one or more malicious
robots that are attempting to hack the solution by solving Problem 2, the swarm
must identify and neutralize the malicious robots.

6 Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks

4 Distributed Swarm DBSCAN, Attack, and IDRS

The original (centralized) DBSCAN algorithm has two parameters: a distance
threshold d that determines whether or not two nodes are neighbors and the min-
imum number of neighbors m a node must have to be considered an ‘internal’
node. The algorithm creates a d-disc graph, such that a particular node’s neigh-
bor set N contains all nodes within distance d of that node. Nodes are defined
as being ‘internal’ if |N| ≥ m neighbors, ‘boundary’ if m > |N| ≥ 1, and ‘outlier’
if |N| = 0. DBSCAN defines that neighboring internal nodes are in the same
cluster, boundary nodes are allowed to join any one of their neighbor’s clusters,
and outlier nodes are not considered to be in any cluster.

The fact that DBSCAN uses the topology of a d-disc graph to perform clus-
tering makes it well suited to distributed implementation on a robot swarm with
local communication. For any physically defined communication radius dmax, it
is possible to run distributed swarm DBSCAN for any d ≤ dmax. After nodes
(robots) have determined if they are internal, boundary, or outlier, the internal
robots of each cluster run a distributed consensus algorithm to agree on a clus-
ter ID. This is accomplished by having internal nodes iteratively exchange and
average a cluster ID number with their neighboring internal nodes.

We explore a DBSCANmasquerade attack in which multiple malicious robots,
dispersed throughout the swarm, cause different clusters to converge to the same
value. Each malicious robot advertises itself as an internal robot and then in-
jects data designed to hijack the consensus algorithm (for example, repeatedly
broadcasting −∞ or 0). If two or more adversarial robots are located in different
clusters, then each cluster containing an adversarial robot can be tricked to con-
verge to the same label. The overall effect is that different clusters that should
be considered unique erroneously believe that they are part of a single larger
cluster. A graphical depiction of this attack appears in Figure 2.

Hacking Distributed Swarm DBSCAN

Initialization (Attacked) Convergence (Attacked) Convergence (with IDRS)

Fig. 2. A masquerade attack on Distributed Swarm DBSCAN. Multiple malicious
robots cause different clusters to erroneously converge to the same cluster label.

Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks 7

To detect and overcome this masquerade attack, we augment Distributed
Swarm DBSCAN with a distributed IDRS. We call the resulting algorithm vari-
ant Resilient Swarm DBSCAN. The IDRS works by having each node maintain
lists of suspected malicious actors B—defined as nodes that have not updated
their convergent values in more than ymax communications. Suspected bad ac-
tors are removed from neighbor lists so that they cannot influence the distributed
consensus algorithm. Each robot maintains its own list of suspected malicious
robots. To isolate an malicious robot from the swarm, all neighboring robots
must detect it separately (by observing unchanging cluster values). A robot that
has been incorrectly labeled as malicious by one robot can still partially con-
tribute to the swarm’s clustering by communicating through other neighbors.

A main goal of our research is to evaluate the extent to which using a dis-
tributed IDRS can increase a swarm’s resilience to malicious attacks—assuming
that malicious robots can be detected (perhaps with occasional false positives).
The simple masquerade attack and IDRS described above are useful because they
achieve this goal. If malicious robots use more sophisticated attacks (for example,
sending random numbers), then more sophisticated IDRS could (and should) be
used instead. In our presentation of Resilient Swarm DBSCAN, all IDRS func-
tionality is consolidated in two subroutines: recordBadActorStatistics() and
calculateBadActors(). More sophisticated IDRS can be incorporated into the
Distributed Swarm DBSCAN algorithm by adding additional functionality to
these two subroutines.

Algorithm 1 Distributed (Resilient) Swarm DBSCAN

Require: i, d, m, ymax

1: initDbscan() /∗ initializes variables ∗/
2: loop
3: if received new message M then
4: j ←M.senderID
5: if dji > d or j ∈ B then

/∗ out of neighborhood radius ∗/
/∗ or from a suspected malicious ∗/

6: continue
7: N← N ∪ {j}
8: if M.status = internal then
9: Nint ← Nint ∪ {j}
10: recordBadActorStatistics(M)

11: Cj ←M.C

12: B← calculateBadActors()
13: blockBadActors()
14: populateMessageMetaData(M̃)
15: if |N| ≥ m then

/∗ this node i is an internal node ∗/
16: Ci ← integer

((
Ci +

∑
j∈Nint

Cj

)
/(1 + |Nint|)

)
17: M̃.status← internal
18: else if |N| ≥ 1 then

/∗ this node i is a boundary node ∗/
19: if Nint ̸= ∅ then
20: j ← closest member of Nint

21: Ci ← Cj

22: M̃.status← bouandary
23: else

/∗ this node i is an outlier node ∗/
24: M̃.status← outlier
25: Broadcast(M̃)

Algorithm 2 initDbscan()

1: parent← ∅ /∗ the parent of this node ∗/
2: N← ∅ /∗ this node’s neighbors ∗/
3: Nint ← ∅ /∗ this node’s internal neighbors ∗/
4: Ci ← randomInteger() /∗ random cluster number ∗/
5: B← ∅ /∗ list of bad actors ∗/
6: Dsame ← {0, . . . , 0} /∗ count duplicate sends ∗/

Algorithm 3 populateMessageMetaData(M̃)

1: M̃.senderID ← i
2: M̃.C ← Ci

Lines & subroutines in blue (including those below)
are only used in Resilient Swarm DBSCAN, the al-
gorithm variant that incorporates an IDRS.

Algorithm 4 recordBadActorStatistics(M)

1: if Cj ̸= M.C then
2: Dsame

j ← 0
3: else if Cj ̸= Ci then
4: Dsame

j ← Dsame
j + 1

Algorithm 5 calculateBadActors()

1: for j ∈ Nint do
2: if Dsame

j > ymax then
3: B← B ∪ {j}
4: return B

Algorithm 6 blockBadActors()

1: N← N \B
2: Nint ← Nint \B

8 Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks

Pseudocode for the Swarm DBSCAN algorithms appears in Algorithm 1.
Lines involved with the IDRS are colored blue. Distributed Swarm DBSCAN
(without IDRS) is described using only the black lines. Resilient Swarm DBSCAN
(with IDRS) is described using black and blue lines.

The algorithm requires input parameters d (neighborhood distance),m (num-
ber of neighbors required by internal nodes), and unique robot ID i. Initialization
is performed by the subroutine initDbscan(); this node’s parent, neighbor set
N, and internal neighbor set Nint are initialized to empty, and Ci is drawn as a
random number. While N will eventually contain all neighbors within commu-
nication range, Nint is the set of neighbors that are also internal nodes.

Message passing is used to transfer data throughout the swarm. Messages
are received (lines 3-4) and then ignored if they are sent from robots beyond the
neighborhood distance threshold (lines 5 and 6). Newly discovered neighbors are
added to this node’s neighbor set (line 7), internal neighbors are added to this
node’s internal neighbor set (lines 8-9), and the sending neighbors continually
converging cluster ID number Cj is updated (line 11). In the second half of
the algorithm this robot’s data is shared with neighbors (lines 14-25). Message
data (this robot’s ID i and current cluster ID integer Ci) is populated using the
subroutine populateMessageMetaData() (line 14). The message is populated
with this node’s current internal, boundary, or outlier status (lines 17, 22, and
24). If this node is an internal node, then it calculates the new value of its
converging cluster ID (line 16), and if it is a boundary node, then it selects the
cluster of its closest neighbor to join (line 20).

Several changes implement the IDRS in the Resilient DBSCAN algorithm.
The message data is processed to calculate suspected malicious robots (lines 10
and 12), messages are rejected from suspicious robots (lines 5-6), and suspicious
robots are removed form neighbor lists via the subroutine via the subroutine
blockBadActors() (line 13).

5 Distributed Swarm k-Means: Algorithm, Attack, IDRS

The distributed swarm k-Means algorithm is designed for use with a robot swarm
that uses (only) local communication and local distance information. Each of the
k clusters are associated with a cluster “root” robot. Cluster roots are analogous
to the cluster centers used in the original k-Means algorithm. Cluster member-
ship of each robot is determined by the closest root robot. At the beginning of
the algorithm the initial k root robots can be chosen randomly (for unsupervised
clustering) or selected by a user (for semi-supervised clustering).

The algorithm is iterative at the swarm level. Each swarm level iteration
involves running the following two distributed processes:

1. Determine the current cluster membership of all robots. This is ac-
complished using a multi-goal distributed Dijkstra’s reverse search to create
a shortest spanning forest that contains k trees—one per cluster. Each clus-
ter’s “root” robot is defined to be a Dijkstra’s “goal” and so becomes a root
of one of the forest’s k different shortest-path trees. After this distributed

Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks 9

calculation, each robot knows its shortest-path graph distance to the nearest
root robot. Each robot adopts the cluster label of its tree’s root.

2. Transfer each cluster’s root toward the middle of that cluster. A
consequence of using (only) local communication is that the responsibility
of being a cluster’s root must pass from neighbor to neighbor—instead of
jumping directly to the cluster’s centroid as in a standard implementation
of k-Means. First, all nodes participate in a distributed calculation that pro-
vides each node with the size of its current sub-tree and those of its children.
Next, each of the k cluster roots determines which of its own children has
the largest sub-tree, and selects that child to become its cluster’s new root.
This causes the cluster root to move one hop toward the cluster’s middle.

The two step process (calculating cluster membership and then passing each
cluster’s roots one communication hop toward its middle) resembles a form of
gradient ascent (see Figures 3 and 4). Passing the root from robot to robot
makes sense when a swarm has only local communication. However, it has the
consequence that the root location will settle into small cycles in the vicinity of
local optima. A separate stopping criterion is required to ensure the algorithm
will halt. The user parameter zmax defines the maximum number of times any
node may pass root responsibility to another robot. After a robot has been root
zmax + 1 times it retains root responsibility and the algorithm converges.

A malicious robot can trick the swarm into making it a root by falsely ad-
vertising a large sub-tree size. If the malicious robot is a neighbor of a cluster
root, then advertising a large sub-tree size will ensure that it becomes a root for
the next iteration. If the the malicious robot is not a direct neighbor of a cluster
root, then well intentioned parents, grandparents, etc. of the malicious robot
will incorporate the malicious robot’s incorrectly large sub-tree size into their
own sub-tree size calculations. Thus, root status will transfer one step closer to

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Start

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Iteration 1

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Iteration 2

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Iteration 3

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Iteration 4

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Iteration 5

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Iteration 6

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Final (It. 19)

Fig. 3. Example of the distributed swarm k-Means algorithm when k = 3. The algorithm
is designed for a swarm of robots using local communication and range sensors to
calculate distances to neighbors (lacking GPS data and lacking global communication).

10 Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks

Hacking Distributed Swarm k-Means

Initialization Convergence (Attack) Convergence (IDRS)

Fig. 4. Root status of passes to the root’s child with the largest sub-tree (left, blue
cluster will pass from node ‘P’ to node ‘B’). A malicious robot can hijack the swarm
by advertising fake large sub-tree size (center). In a distributed IDRS that detects
this attack robots send the IDs of nodes in their sub-trees. Robots suspected of being
malicious—due to conflicting sub-tree information—are ignored (right).

the malicious robot each iteration. Eventually, a direct neighbor of the malicious
robot will become root (by induction), and then the malicious robot itself.

A distributed IDRS can be added to Distributed Swarm k-Means to create a
new algorithm variant we call Resilient Swarm k-Means. The distributed IDRS
works by having each robot send the IDs of all nodes in its sub-trees (instead of
only sending its sub-tree size). In a spanning forest, each node can only appear in
one branch of a single tree. If two robots on different branches claim to have the
same robot as part of their sub-tree, then the other robots add both (potentially
malicious) robots to a malicious robot list. This reduces the damage a single
malicious robot can cause.

All robots share their lists and robots suspected of being malicious are not
included in the next shortest spanning forest. This provides a means of detecting
some good robots that have been accidentally labeled as malicious. Because the
new shortest spanning forest will ignore (and exclude) malicious robots, then
robots that broadcast sub-trees containing only themselves cannot be malicious.

This particular IDRS requires an increase in message size from O(1) to O(n),
which may not be appropriate in all cases. As with the DBSCAN attack and
IDRS described in the previous section, our main goal is to evaluate how algo-
rithmic performance changes with and without the use of IDRS. We do not claim
that this is the best possible IDRS—only that it enables the swarm to detect
the masquerade attack described above. This is useful for understanding the po-
tential benefits of using swarm IDRS more generally. More sophisticated attacks

Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks 11

Algorithm 7 Distributed (Resilient) Swarm k-Means

Require: i, Cinit, zmax, Tmin

1: initializeKmeans() /∗ initializes variables ∗/
2: loop
3: if received new message M then
4: j ←M.senderID
5: if M.t < t or dji > d or j ∈ B then

/∗ message out of date or beyond radius ∗/
/∗ or from suspected malicious ∗/

6: continue
7: if M.t > t then

/∗ a new k-Means iteration has started ∗/
8: resetDistanceTree()
9: conflictDurationReset(Nc \B,Nc)
10: t←M.t
11: updateDistanceTree(M)
12: B← calculateBadActors()
13: B← calculateGoodActors()
14: blockBadActors()
15: Si ← {i}+

⋃
j∈Nc

Sj

16: populateMessageMetaData(M̃)
17: M̃.S ← Si

18: M̃.B← B
19: if droot = 0 and z ≤ zmax and currentTime() −

lastUpdated ≥ Tmin then
/∗ pass root to child with largest sub-tree ∗/

20: M̃.newRootID = argmaxj∈Nc
|Sj |

21: Broadcast(M̃)

Algorithm 8 initializeKmeans()

1: parent← ∅ /∗ the parent of this node ∗/
2: t← 0 /∗ k-Means iteration ∗/
3: droot ←∞ /∗ distance to root ∗/
4: Nc ← ∅ /∗ set of this node’s children ∗/
5: z ← 0 /∗ times this robot has been cluster root ∗/
6: Si ← {i} /∗ this nodes sub-tree set ∗/
7: B← ∅ /∗ list of bad actors ∗/
8: if i ∈ Cinit then
9: droot ← 0
10: t← 1
11: lastUpdated← currentTime()

Algorithm 9 updateDistanceTree(M)

1: B← B ∪M.B /∗ synchronize bad actor list ∗/
2: if dji +M.droot < droot then

/∗ a shorter path to a cluster root has been found ∗/
3: parent← j
4: droot ← dji +M.droot
5: else if i = M.parent then

/∗ this node i is the parent of the sending node j ∗/
6: Nc ← Nc ∪ {j}
7: Sj ←M.S
8: else if i ̸= M.parent then

/∗ this node i is not parent of the sending node j ∗/
9: Nc ← Nc \ {j}
10: Sj ←M.S
11: if parent = j then

/∗ sending node j is the parent of this node i ∗/
12: if M.newRootID = i then

/∗ this node j is the new cluster root ∗/
13: parent← ∅
14: t← t+ 1
15: z ← z + 1
16: lastUpdated← currentTime()
17: else
18: droot ← dji +M.droot

Algorithm 10 calculateGoodActors()

1: for j ∈ B do
2: if Sj = {j} then
3: B← B \ {j}
4: for ℓ ∈ Nc \ {j} do
5: conflictDurationReset({j}, {ℓ})
6: return B

Algorithm 11 calculateBadActors()

1: for j ∈ Nc \B do
2: for ℓ ∈ (Nc \B) \ j do
3: if Sj ∩ Sℓ ̸= ∅ then
4: if conflictDurationExceeded(j, ℓ) then
5: B← B ∪ {j}
6: else
7: conflictDurationIncreased(j, ℓ)

8: return B

Algorithm 12
resetDistanceTree()

1: droot ←∞
2: parent← ∅
3: Nc ← ∅

Algorithm 13 populateMessageMetaData(M̃)

1: M̃.senderID ← i
2: M̃.t← t
3: M̃.parent← parent
4: M̃.newRootID = ∅

Algorithm 14 blockBadActors()

1: Nc ← Nc \B
2: if parent ∈ B then
3: parent← ∅
4: droot ←∞

can potentially be addressed my modifying the functionality of the subroutines
calculateBadActors() and calculateGoodActors().

For brevity, the pseudocode for Distributed Swarm k-Means (without IDRS)
is combined with that for Resilient Swarm k-Means (with IDRS) in Algorithms 7-
14. Color is used to indicate which lines belong to which variants. The set of
initial cluster centers Cinit is provided (by a user or some other means such as
random selection) and each robot knows its own ID number i and the value
of zmax. An additional user-defined parameter Tmin is compared with the time
since the root shifted lastUpdated to prevent root transfer from occurring too
quickly. Each robot tracks the size of its sub-tree si and the sub-tree sizes of
each neighbor j using an array entry sj indexed by j.

12 Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks

The shortest spanning forest distance data is updated to reflect most cur-
rent information from all neighbors using the subroutine updateDistanceTree(),
which performs two important tasks. First, it runs the distributed Dijkstra’s re-
verse search that provides each node with its distance to the closest root. Second,
it detects if/when this robot has been promoted to be a root—in which case this
robot increases the value of t and restarts the distributed distance calculation.

The algorithm works in a distributed fashion that relies on local message
passing. Each distributed iteration (at the swarm level) is associated with a
unique number t. Messages from previous iterations are ignored, as are messages
from beyond the allowed communication radius d (lines 5-6). Whenever the root
increases the iteration number, then the shortest path tree distance calculation is
reset (Lines 7-10). If the IDRS is used, then the sub-tree set is updated (line 15).
Basic message data (iteration, tree distances, etc.) is populated using the subrou-
tine populateMessageMetaData(). If this robot is the root (droot = 0), has not
exhausted its root passing threshold (z ≤ zmax), and the tree has stabilized for
some a user-defined amount of time (currentTime()−lastUpdated ≥ Tmin), then
this robot chooses the new cluster root (its child with the most descendants),
and adds this data to the outgoing message (lines 19-21).

Lines involved with the IDRS appears blue. If the IDRS is used, then mes-
sages from suspected malicious robots are also ignored (line 5). Avoiding prob-
lems caused by start-up effects (when the minimum spanning forest has not
yet converged) is accomplished by defining a “conflict duration”, and then only
adding robots to the bad actor list if they report conflicting data for longer than
the conflict duration. Conflicts are defined as an ordered tuple. The conflict (j, ℓ)
means that j is suspected of being malicious due to a conflict with ℓ. The du-
ration for which one node has conflicted with another is incremented inside the
subroutine calculateBadActors() (line 12). The conflict duration of all non-
bad-actors are also reset whenever there is a change in the root node (line 9)
using the subroutine resetConflictDurations(Nc \ B,Nc), which resets all
timers for conflicts (j, ℓ) such that j ∈ Nc \B and ℓ ∈ Nc \ j.

Robots are removed from the bad actor list if the sub-tree set they report
contains only themselves inside the subroutine calculateGoodActors() (line
13). Finally, robots suspected of being malicious are not allowed to participate
as parents or children in the shortest path tree calculation (line 14).

6 Experiments

We perform a series of experiments in both simulation and in hardware testbeds
using a homogeneous swarm of 25 Kilobot robots, pictured in Figure 1. Kilobots
are identical, low-cost robots, 33mm in diameter, controlled by an AtMega328
microprocessor [15]. They use infrared LEDs and sensors to communicate with
other Kilobots within a 100mm radius, and convey information though an RGB
LED. The simulations use a real-time Kilobot simulator written in C.

Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks 13

6.1 Silhouette Coefficient Performance Metric

We use the silhouette coefficient to evaluate clustering performance [14]. This
statistic requires, for all n nodes, the average distance to all nodes within the
cluster, ai, and the average distance to all nodes not in the cluster, bi. For
each node, a silhouette value is calculated ci = bi−ai

max {ai,bi} . This value ranges

−1 ≤ ci ≤ 1, such that negative values indicate bad clustering and positive val-
ues indicate good clustering. The final silhouette coefficient, summarizing the
clustering accuracy for all nodes, is the maximum of the n silhouette values. If
the whole swarm is classified as a single cluster, the silhouette coefficient is zero.

6.2 Experimental Process

We investigate six different cases: the Distributed (non-IDRS) variants of Swarm
k-Means and Swarm DBSCAN are both tested with and without malicious at-
tacks. The Resilient (IDRS) variants are tested with malicious attacks. Each of
the six cases is evaluated using repeated trials in both simulation and hardware.

Repeated trials involved 15 unique cluster configurations. Each configuration
is randomly generated as follows: three 2D coordinates serve as cluster centers
in a generative model, 25 points are generated by sampling three Gaussian dis-
tributions, each with a mean located at one of the centers. An oracle silhouette
coefficient is calculated using the perfect knowledge of which position corre-
sponds to which Gaussian. This oracle value defines the silhouette coefficient of
“perfect” performance achievable by an oracle with complete knowledge of sam-
ple generation. While any real algorithm should not be expected to outperform
an oracle, the oracle silhouette coefficient provides useful context for evaluating
the relative performance of the six cases.

On the real-time simulator, we ran six algorithm: thee three k-Means Al-
gorithms and the three DBSCAN Algorithms. Each algorithm ran on the 15
configurations three time each, for a total of 45 trials per algorithm (270 trials
total). We ran the Attacked k-Means, the Attacked DBSCAN, the Resilient k-
Means, and the Resilient DBSCAN with one, two, and three adversaries split
evenly among the 45 trials per algorithm. During each trial, the adversaries (and
for k-Means the k roots) were chosen uniformly at random from members of the
swarm. The resulting starting configuration was used once for each of the six
cases. Hardware testbed experiments were performed in the same manner, run-
ning 15 trials for the three k-Means scenarios, and 30 trials for each of three
DBSCAN scenarios. Overall, we performed 135 hardware testbed tests and 270
tests in the real-time simulator.

Table 1. Silhouette Coefficient as
Percentage of Oracle on Simulator

Distributed Attacked Resilient

k-Means
(45 trials per algorithm)

85% 8% 74%

DBSCAN
(45 trials per algorithm)

97% 66% 95%

Table 2. Silhouette Coefficient as
Percentage of Oracle on Simulator

Distributed Attacked Resilient

k-Means
(15 trials per algorithm)

94% 40% 71%

DBSCAN
(30 trials per algorithm)

98% 72% 99%

14 Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks

Fig. 5. Comparative performance of the k-
Means and DBSCAN algorithms on the
simulator (45 trials per algorithm).

Fig. 6. The comparative effect of the num-
ber of adversaries on the simulator (15 tri-
als per number of adversaries).

7 Discussion of Results

We find that Distributed Swarm DBSCAN tends to produce more accurate clus-
tering than the Distributed Swarm k-Means Algorithm. On average, Distributed
Swarm k-Means performed at, on average, 85% of the “perfect” oracle silhou-
ette coefficient, while Distributed Swarm DBSCAN performing, on average, at
97% of the oracle (Table 1). Similar trends appear in simulation and hardware
experiments (Tables 1 and 2).

Hypothesis tests show a statistically significant loss in performance in the
presence of a malicious robot (p < 1× 10−6 for the simulated swarm using a
one-tailed paired t-test; p < 2.6× 10−5 for the hardware swarm using a non-
parametric Kolmogorov-Smirnov (KS) test). The k-Means attack resulted in
an average silhouette coefficient near zero, performing at 8% of the oracle. By
comparison, the DBSCAN algorithm was less susceptible to attacks, performing
66% of the oracle in the presence of one or more adversaries (Table 1). This
implies that even a single malicious robot can have disastrous consequences on a
swarm’s emergent behavior. Swarm k-Means, with its top-down tree structure,
appears more vulnerable to disruption than the bottom-up DBSCAN. This rein-
forces the idea that potential for disruption by a malicious robot increases with
centralization.

Using the IDRS produced a statistically significant improvement in accuracy
for both the Swarm k-Means and Swarm DBSCAN Algorithms (p < 1.0× 10−5

for the simulated swarm using a one-tailed paired t-test; p < 0.04 for the hard-
ware swarm using a nonparametric KS test). On average on the simulator, the
Resilient k-Means restored performance to within 10% of its non-attacked variant
and Resilient DBSCAN restored performance to within 3% of its non-attacked
variant. For the k-Means algorithm, though performance improved with the
IDRS, it did not return to pre-attack levels, with a statistically significant differ-
ence when compared with the non-attacked Distributed variant (p < .002). The

Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks 15

malicious robot caused more disruption to the algorithm than the IDRS could
undo within the time taken to isolate the attack. The performance of Resilient
DBSCAN, however, restored clustering accuracy to near-original levels, with no
statistically significant difference between performance for the Distributed and
Resilient variants. In total, these results suggest that a well-programmed dis-
tributed IDRS can protect swarms in hostile situations, partially or fully.

Figure 6 contrasts how, depending on the algorithm, a greater number of
adversaries may or may not worsen the algorithm’s performance. For the k-
Means attack, varying the number of adversaries in the swarm has very little
relationship with the attack’s ability to disrupt clustering. A single malicious
robot has the potential to hijack all three roots, and so adding more adversarial
robots did not increase its potential for disruption. In contrast, each additional
malicious robot present during DBSCAN Algorithm’s caused a notable drop in
accuracy and a greater variation in performance.

8 Conclusion

In this paper, we investigate how malicious masquerade attacks can affect two
distributed swarm clustering algorithms—one based on the k-Means algorithm
and another based on the DBSCAN algorithms. We analyze how the algorithms’
resilience to such attacks can be increased through the use of a distributed In-
trusion Detection and Response System (IDRS). These experiments were per-
formed on both a hardware and simulated testbed of swarm robots. We find
that the Distributed Swarm k-Means Algorithm is more susceptible to attack
the Distributed Swarm DBSCAN Algorithm. Results also show that increasing
the number of adversarial robots caused larger disturbances in the DBSCAN
Attack, while more adversaries had less effect on the k-Means Attack. Finally,
we find that distributed IDRS can largely restore the swarm’s performance.

Acknowledgments This work was partially supported by a joint Northrop
Grumman and UMD Seedling Grant and by ONR grant N000142012712.

References

1. Anikin, I.V., Gazimov, R.M.: Privacy preserving dbscan clustering algorithm for
vertically partitioned data in distributed systems. In: 2017 International Siberian
Conference on Control and Communications (SIBCON). pp. 1–4. IEEE (2017)

2. Ben Salem, M.: Towards effective masquerade attack detection (2012), https://
academiccommons.columbia.edu/doi/10.7916/D8J96DBT

3. Dasgupta, S., Frost, N., Moshkovitz, M., Rashtchian, C.: Explainable k-means
and k-medians clustering. In: Proceedings of the 37th International Conference on
Machine Learning, Vienna, Austria. pp. 12–18 (2020)

4. Gil, S., Kumar, S., Mazumder, M., Katabi, D., Rus, D.: Guaranteeing spoof-
resilient multi-robot networks. Autonomous Robots 41 (08 2017)

16 Decentralized Robot Swarm Clustering: Resilience to Malicious Attacks

5. Götz, M., Bodenstein, C., Riedel, M.: Hpdbscan: highly parallel dbscan. In: Pro-
ceedings of the workshop on machine learning in high-performance computing en-
vironments. pp. 1–10 (2015)

6. Higgins, F., Tomlinson, A., Martin, K.: Threats to the swarm: Security considera-
tions for swarm robotics. International Journal on Advances in Security 2 (2009)

7. Kolias, C., Kambourakis, G., Maragoudakis, M.: Swarm intelligence in intrusion
detection: A survey. Computers & Security 30(8), 625 – 642 (2011), http://www.
sciencedirect.com/science/article/pii/S016740481100109X

8. Laing, T., Martin, K., Ng, S., Tomlinson, A.: Security in Swarm Robotics, pp.
42–66. IGI Global (Dec 2015)

9. Ling, R.F.: On the theory and construction of k-clusters. The Computer Journal
15(4), 326–332 (01 1972), https://doi.org/10.1093/comjnl/15.4.326

10. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

11. Mao, Y., Xu, Z., Li, X., Ping, P.: An optimal distributed k-means clustering algo-
rithm based on cloudstack. In: 2015 IEEE International Conference on Information
and Automation. pp. 3149–3156. IEEE (2015)

12. McCune, R., Madey, G.: Decentralized k-means clustering with manet swarms. In:
Proceedings of the 2014 Symposium on Agent Directed Simulation. pp. 1–8 (2014)

13. Patel, S., Patel, V., Jinwala, D.: Privacy preserving distributed k-means clustering
in malicious model using zero knowledge proof. In: International Conference on
Distributed Computing and Internet Technology. pp. 420–431. Springer (2013)

14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics 20, 53–65
(1987)

15. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014), https://science.
sciencemag.org/content/345/6198/795

16. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors
and current applications. Frontiers in robotics and AI 7, 36 (2020)

17. Stakhanova, N., Basu, S., Wong, J.: A taxonomy of intrusion response system.
International Journal of Information and Computer Security 1 (01 2007)

18. Whelan, C., Harrell, G., Wang, J.: Understanding the k-medians problem. In:
Proceedings of the International Conference on Scientific Computing (CSC). p.
219. The Steering Committee of The World Congress in Computer Science, Com-
puter . . . (2015)

19. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Annals of Data
Science 2 (08 2015)

20. Yang, K., Gao, Y., Ma, R., Chen, L., Wu, S., Chen, G.: Dbscan-ms: Distributed
density-based clustering in metric spaces. In: 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE). pp. 1346–1357. IEEE (2019)

21. Zhou, J., Zhang, Y., Jiang, Y., Chen, C.P., Chen, L.: A distributed k-means clus-
tering algorithm in wireless sensor networks. In: 2015 International Conference
on Informative and Cybernetics for Computational Social Systems (ICCSS). pp.
26–30. IEEE (2015)

