
Large-scale Heterogeneous Multi-Robot Coverage
via Domain Decomposition and Generative

Allocation

Jiaheng Hu, Howard Coffin, Julian Whitman,
Matthew Travers, and Howie Choset

Carnegie Mellon University, Pittsburgh PA 15289, USA
{jiahengh, hcoffin, jwhitman, mtravers, choset}@andrew.cmu.edu

Abstract. This paper develops a new approach to direct a set of hetero-
geneous agents, varying in mobility and sensing capabilities, to quickly
cover a large region, say for example in the search for victims after a
large-scale disaster. Given that time is of the essence, we seek to miti-
gate computational complexity, which normally grows exponentially as
the number of agents increases. We create a new framework which re-
duces the planning complexity through simultaneously decomposing a
target domain into sub-regions, and assigning a team of agents to each
sub-region in the target domain, as a way to decompose a large-scale
problem into a set of smaller problems. The teams are formed to optimize
the coverage of each sub-regions. Doing so requires both the utilization
of individual agents’ strengths as well as their collaborative capabilities.
We determine the ideal team by introducing a novel evolution-guided
generative model based on generative adversarial networks (GANs) that
creates allocation plans from the sub-region features in a computation-
ally efficient manner. We validate our framework on a real-world satel-
lite images dataset, and demonstrate that through decomposition and
generative allocation, our method has significantly better efficiency and
efficacy compared to current centralized multi-robot coverage methods,
and is therefore better suited for large-scale time-critical deployment.

Keywords: Mutli-robot Coverage, Task Allocation, Generative Adver-
sarial Networks

1 Introduction

This paper considers large-scale deployment of heterogeneous robots in time-
critical scenarios, for applications such as search and rescue or disaster response.
In such applications, coverage of a region can be optimized by combining the
different motion and sensing capabilities of multiple agents. Coordinating and
effectively using these heterogeneous capabilities requires a significant computa-
tional effort, which may not be available due to hardware and time constraints.
Specifically, centralized multi-robot coverage algorithms typically suffer from ex-
ponential growth in planning time as the number of agents grow, making them
unsuitable for large-scale deployment [6, 27, 29].

2 J. Hu et al.

Fig. 1: We consider large-scale deployment of heterogeneous robots in the context
of multi-robot coverage. For a given target region (a) to cover, our framework
takes as input its corresponding labelled terrain map (b), then decomposes it
into sub-regions (c) based on terrain features. Robot teams (d) are subsequently
allocated to each of the sub-regions based on the terrain features. Each robot
team plans its trajectories in a decentralized fashion, where the colored lines in
(d) correspond to the trajectories of each agent type as they search the region.

We alleviate the complexity of coordinating large-scale heterogeneous teams
by breaking down the coverage planning problem into a centralized “decom-
position and allocation" step, and a decentralized “trajectory planning" step.
Our framework decomposes a target region (e.g. a map of an environment) into
sub-regions based on terrain features, and then assigns agents to teams that
are deployed to each sub-region. By simultaneously partitioning the search do-
main into sub-regions and the agents into teams, we naturally decompose a large
coverage problem into a set of smaller problems. This allows us to plan the tra-
jectory of each team of robots distributively while still considering the global
distribution of terrain and information.

Our framework addresses the challenge of determining the robot teams for
each sub-region, while accounting for both a sub-region’s features and each
robot’s capabilities. This problem, often referred to as centralized multi-robot
task allocation (MRTA) [18], is NP-hard [20]. A wide range of approaches have
been proposed to obtain approximate solutions for centralized MRTA [31, 26, 23,
36, 35, 40]. However, these approaches typically require repeated evaluation of
performance for different team plans on different tasks, and can become com-
putationally expensive when scaling to large teams of robots. Besides computa-
tional constraints, an additional concern in multi-robot deployment is deciding
how many robots to deploy. Deploying more robots will naturally result in better
coverage, but will simultaneously induce higher deployment cost. As a result, a
single solution is often not sufficient: a user supervising the robot teams may de-
sire multiple solutions that exemplify the trade-offs between the two conflicting
objectives of coverage performance and deployment cost. Adding this property
to the team formation problem makes it a multi-objective combinatorial opti-

Large-scale Heterogeneous Multi-Robot Coverage 3

mization problem where our goal is to find team allocation plans with optimal
trade-offs across the objectives; i.e. the Pareto set [38] of allocation plans.

To optimize for multiple objectives while maintaining computational effi-
ciency, we introduce a novel generative approach that learns correlations be-
tween tasks and desirable team allocations. We train an allocation generator,
implemented as a neural network, to learn a one-to-many mapping from tasks,
represented as sub-regions, to a set of Pareto-optimal allocations reflecting the
trade-off between conflicting objectives. Unlike past works using GANs, where
a dataset is present prior to training [12, 30], we have no data a priori from
which a mapping from tasks to allocation plans can be distilled. Worse yet,
collecting such a dataset from scratch is enormously computationally burden-
some, as obtaining each tasks-allocation pair requires solving a combinatorial
optimization problem. Instead, our approach actively collects data on-line dur-
ing training through a novel evolution-guided data creation process inspired by
multi-objective evolutionary algorithms. This data creation process looks for new
promising allocation plans around the current generated allocations, promoting
the generator to improve the quality of its output. Once the generator is trained,
we can query for allocation plans through an inexpensive neural network forward
pass, making task allocation computationally efficient at run-time.

The decomposition and allocation steps give us a set of sub-problems for
each team-region combination. We apply a local trajectory planner [28] to plan
trajectories maximizing coverage of each sub-region. We tested our algorithm on
the DroneDeploy dataset of labelled satellite images [32], and demonstrated sig-
nificantly improved coverage performance compared to fully centralized coverage
planning. Importantly, after the off-line training of the allocation generator is
completed, the entire decomposition and allocation pipeline can be completed
for a team of 60 robots within 30 seconds on a laptop computer during testing,
and is therefore suitable for time-critical deployment.

2 Domain Decomposition

The first step in our framework is domain decomposition, where the search do-
main is partitioned into smaller regions, to which agents will be allocated. The
domain decomposition step takes in a labelled terrain map Mterr where each
pixel value belongs to a finite list of terrain types, and partitions it into k non-
overlapping sub-regions [M1, ...,Mk], with k determined by the user. The terrain
feature distribution fi of each sub-region Mi can be represented as a categorical
distribution over terrain types, with each entry corresponding to the proportion
of pixels of a specific terrain type in the given sub-region. In addition, we keep
track of the size of each sub-region as S = [area(M1), ..., area(Mk)].

The approach we use for decomposition is to place and optimize the location
of generator points of a Voronoi diagram [15, 25] with respect to a cost function
C, i.e., we seek:

P ⋆ = argmin
P

C(P) (1)

4 J. Hu et al.

Fig. 2: Illustration of our generative allocation training algorithm. At each train-
ing iteration, a partitioned terrain is sampled from the training dataset and
passed into the generator. The generator (bottom center) maps this partitioned
terrain into a population of allocation plans (bottom right, showing one exam-
ple allocation plan). The evolution-guided data creation step explores around
the generated allocation plans by evolving them using a procedure inspired by
Multi-objective Evolutionary Algorithms, and creates a population of evolved
allocation plans (top right, showing one example allocation plan). The discrim-
inator (top center) takes as input the terrain and an allocation plan that is
either from the generated allocations or the evolved allocations, and tries to
distinguish which population the allocation comes from. The output of the dis-
criminator feeds into the loss function LG, which encourages the generator to
learn to “trick” discriminator by generating high-quality allocation plans.

where P = (p1, ..., pk) is the 2D positions of the generator of each of the k
sub-regions.

An ideal cost function should utilize terrain information to guide the decom-
position process. In this work, we proposed a hand-crafted cost function that
encourages heterogeneity in the terrain distribution of each sub-regions, thereby
encouraging the formation of multi-ability teams. Formally,

Cf (P) = −1

k

k∑
i=1

H(fi)

Cb(P) = var(S)

C(P) = Cf (P) + λterr ∗ Cb(P)

(2)

with H(fi) the entropy of the terrain features distribution for sub-region
Mi associated with the generator pi ∈ P , var(S) the variance of the sub-region
areas, and λterr the weight. In other words, we seek to maximize the entropy

Large-scale Heterogeneous Multi-Robot Coverage 5

of each sub-region’s terrain distribution (Cf) while minimizing the variance of
each sub-region’s size (Cb). Notice that alternative objective functions may also
be considered, and it is unclear which objective function is best suited for the
decomposition task. Theoretical analysis of how different decomposition strat-
egy will affect the eventual coverage results is an open question that may be
addressed by future works.

Due to the time-critical nature of our applications, we do not look for an exact
solution to (1). Instead, we approximately solve for the decomposition through
differential evolution [33], a gradient-free black box optimization method. An
example of result of domain decomposition is shown in Fig. 1.

3 Generative Task Allocation

The task allocation step in our pipeline takes in the sub-regions (tasks) generated
by the decomposition phase and determines a set of heterogeneous robots R =
{r1, ..., rN} to allocate to each sub-region. Each robot ri belongs to a species [34],
oi ∈ O which determines its motion and sensing capability. A robot team ai is
defined as a subset of available robots R which act as a team to complete a task.
An allocation plan A = {a1, . . . aK} consists of K teams, one for each task, where⋃K

i=1 ai ⊆ R, and ∀i ̸= j : ai ∩ aj = ∅. We numerically represent an allocation
plan A as a K ×O integer matrix in this work, where A(i, j) represents the the
number of robot of species j to allocate to task i. We denote the coverage cost of a
robot team a on task t as f(a, t) ∈ R, and use the sum of the coverage cost on all
tasks as the coverage cost for the team. The coverage cost measure is calculated
based on the local trajectory planner, explained in detail in Sec. 4. In addition,
each robot ri deployed incurs a deployment cost ci, where the total deployment
cost is the sum of the cost of all deployed robots. Both the deployment cost
and the coverage cost are objectives to be minimized. We frame task allocation
as an multi-objective optimization problem, where the goal is to find a set of
allocations with optimal trade-offs between the two conflicting objectives, i.e.
the Pareto-optimal allocations.

3.1 Preliminaries

Due to the time-critical nature of multi-robot search and coverage, we seek team
allocation methods that can operate in near real-time, and propose a novel gen-
erative task allocation approach combining ideas from evolutionary algorithms
and generative adversarial networks. We briefly review evolutionary algorithms
and generative models in the following section.

Evolutionary Algorithms Evolutionary algorithms (EAs) have been widely
adopted for solving multi-robot task allocation problems [41, 24, 39]. EAs rep-
resent a class of population-based metaheuristic optimization algorithms that
are inspired by biological evolution. This class includes genetic algorithms [16],

6 J. Hu et al.

differential evolution [33], ant colony optimization [11], and particle swarm op-
timization [17]. EAs maintain and update a population of candidate solutions
through a set of operations, and are capable of finding optimal or near-optimal
solutions to NP-hard problems within tractable time [9]. They are also able
to find multiple solutions due to their population-based nature, and are thus
suitable for multi-objective optimizations [8, 37]. A multi-objective genetic algo-
rithm was used in [3] to obtain a Pareto-optimal set of solutions for MRTA. A
multi-objective particle swarm optimization (MOPSO) was used in [31] to han-
dle task allocation with multiple objectives. However, since EAs require repeated
fitness function evaluations, each of which may involve planning and simulation,
EAs can quickly become computationally expensive when dealing with relatively
costly fitness functions [7] as are often found in real-world multi-robot applica-
tions. As a result, these algorithms are not suitable for time-critical situations.

Generative Models To generate allocation plans in a time-efficient manner,
we propose to learn a mapping from a list of tasks to a distribution of allocation
plans representing a set of Pareto-optimal solutions, through training a genera-
tive model. Generative Adversarial Networks [12] (GANs) are implicit generative
models that learn patterns within a dataset, such that the model can be used
to generate new samples as if they were drawn from the same underlying distri-
bution as the data. A GAN consists of two components: a generator that learns
a mapping from a noise vector to generated data sample, and a discriminator
that learns to distinguish generated samples from real samples. These two com-
ponents are typically implemented as deep neural networks and are optimized
simultaneously through gradient descent. Since the two networks have compet-
ing objectives, training a GAN can be viewed as two players playing a minimax
game [12]. The conditional GAN [30] was later introduced as a variant that out-
put labeled samples by conditioning both the generator and the discriminator
on a given label. Another variant of the GAN known as the Wasserstein GAN
(WGAN) [4] minimizes an approximation of the Earth Mover distance [21] be-
tween the target distribution and the generated distribution. Improved WGAN
[13] was later introduced to stabilize GAN optimization by using a gradient
penalty term instead of the original gradient clipping scheme in WGAN. In our
work, we adopt a conditional variant of the improved WGAN to learn a map-
ping from tasks to allocations, and train it with a novel evolution-guided data
creation step.

3.2 Evolution-Guided GAN

Our generative task allocation system is composed of three key components: a
generator, a discriminator, and a evolution-guided data creator. An illustration
of these components is shown in Fig. 2. The generator maps tasks to allocation
plans. The discriminator tries to distinguish between allocation plans generated
by the generator, and allocation plans produced by the evolution-guided data
creator. Both the generator and the discriminator are implemented as neural

Large-scale Heterogeneous Multi-Robot Coverage 7

Generative Allocation Random Allocation No Decomposition

Robots:
Aerial
Aquatic
Ground

Terrains:

 Water Plain
 Mountain City

Fig. 3: A visual comparison of coverage performance between decomposition with
generative allocation (left column, ours), random allocation (middle column), or
no decomposition (right column), on three different test terrains (top, middle,
and bottom rows). On all three test terrains, our method achieves higher coverage
over the target region than the other two methods.

networks and are trained using a conditional variant of improved WGAN [30,
13]. The evolution-guided data creator is introduced to obtain training data
for the discriminator, by performing n steps of multi-objective evolution on the
generated allocation plans at each iteration. These evolution steps iteratively
improve the output of the generator, guiding the generator to approximate a
distribution of increasingly higher-quality candidate solutions.

Generator The generator Gθ(z, T) is implemented as a multi-layer perceptron
(MLP) network with 3 hidden layers of size 64, with batch normalization [14]
and ReLU activation [2] at each hidden layer. Gθ(z, T) takes in a P -dimensional
vector z ∈ RP sampled from a standard multivariate Gaussian distribution,
z ∼ N (0, I), and a K×M terrain features matrix representing the queried tasks
T , where K is the number of sub-regions, and M is the number of distinct terrain

8 J. Hu et al.

types. Each row of the terrain features matrix correspond to the terrain features
distribution of a specific sub-region, and sum to 1. The output of the generator
is an allocation plan, represented as a dense non-negative K × O matrix Agen,
where O is the total number of robot species. Each entry of the output Agen(i, j)
specifies the fraction of robots of species j to deploy to task i. The integer number
of robots of species j to deploy to sub-region i can then be calculated through
a continuous relaxation N

(i)
j = round(Nj × Agen(i, j)), where Nj is the total

available number of robots of species j.
The generator loss to be minimized is:

LG(z, T ; θ) = −Dϕ(Gθ(z, T), T) (3)

where Dϕ is the discriminator parameterized by ϕ, explained in detail in the
next paragraph.

Discriminator The discriminator Dϕ(A, T) is also implemented as a multi-
layer perceptron (MLP) network with 3 hidden layers of size 64, with batch
normalization [14] and ReLU activation [2] at each hidden layer. Dϕ(A, T) takes
in an allocation plan A and a queried set of tasks T and outputs a scalar. Simi-
lar to the canonical GAN, this scalar can be viewed as a prediction of whether
the design is generated by the generator. The training data for the discrimi-
nator comes from two sources. Half of the allocation plans are synthesised by
the generator, and are labeled 0 (“fake”). The other half are obtained from the
evolution-guided data creation step (described in the next sub-section) and are
labeled 1 (“real”).

The discriminator is then optimized to maximize the difference between its
output for real and fake data, with real data scoring higher, to provide a gradient
signal to the generator. Formally, the discriminator loss to be minimized is:

LD(z,Aevo, T ;ϕ) = −Dϕ(Aevo, T) +Dϕ(Gθ(z, T), T)

+α(∥∇ÃDϕ(x, T)∥ − 1)2
(4)

where Aevo is the training data produced by the evolutionary algorithm. The
additional gradient penalty term is introduced in the improved WGAN [13] to
stabilize training. We use α = 10 and Ã = ϵAevo+(1−ϵ)Gθ(z, T) with ϵ ∼ U(0, 1)
as done in [13].

Evolution-guided Data Creation Our method is fundamentally different
from a canonical GAN since we do not have a dataset collected a priori. In-
stead, we generate training data online through a novel evolution-guided pro-
cess, inspired by evolutionary algorithms, which iteratively pushes the generator
towards generating designs with higher quality.

During each training iteration, we pass a list of tasks T and a batch of ran-
domly sampled latent vectors z through the generator to obtain a batch of allo-
cation plans. These allocation plans are then treated as if they are the population

Large-scale Heterogeneous Multi-Robot Coverage 9

of an multi-objective EA, and iterate through n evolution steps (e.g. mutations,
cross-over, evaluation, and elite selection) to create an evolved population. The
evolution steps improve the Pareto optimality of the allocation plans, which are
passed into the discriminator in place of what would be considered the “real”
data in a conventional GAN. By training the GAN with the evolved samples,
we effectively guide the generator to model a task-conditioned distribution that
is iteratively shifted towards higher-quality regions in the solution space.

The generator and discriminator are both conditioned on the task description.
Without this task-conditioning, the training procedure would be similar to a
standard EA, wherein a population of allocation plans are evolved for a single
target region. By conditioning the generator and the discriminator on the tasks,
and randomly sampling tasks at each iteration, the GAN learns to interpolate
between different tasks, which is the key to how our approach is able to generalize
to unseen tasks during deployment.

Any variety of multi-objective population-based optimization algorithm could
be used inside the data creation process. However, the specific algorithm cho-
sen will affect the convergence behavior of the generator. In this work, we used
NSGA-ii [10], a well-known fast sorting and elite multi-objective evolutionary
algorithm [42].

4 Local Trajectory Planning and Coverage Calculation

Given the decomposed sub-regions and the allocated teams, each robot team is
deployed to cover the corresponding sub-region distributively. Specifically, for
each given robot team, a local trajectory planner is called to optimize the joint
trajectory of all robots within it. The same planner is called both during the
training of the generator for calculation of coverage cost, and during execution
for deriving the robots’ trajectories.

The coverage performance for each robot team ai is measured via the path
ergodicity [27]. The ergodic metric has been used previously as the objective
function for many information-gathering and search tasks [29, 28, 5, 1], and its
non-linearity with respect to the number of and type of robots covering an area
poses an interesting challenge for the task allocation problem.

The ergodic metric E(x) is a function of the time averaged spatial statistics
C of the robots’ trajectories x:

C(x) =
1∑|a|

j=1

∑
t wj

|a|∑
j=1

∑
t

wjδ(xj,t − x), (5)

where x ∈ RD is a point in the search space and xj,t ∈ RD is the location of robot
j at time t. wj is a weight assigned to each species of robot which specifies how
useful its measurements will be. We note that this definition is slightly different
from [27], where all the weights are assumed to be 1 (i.e., that all robots take

10 J. Hu et al.

Fig. 4: Our generator outputs a set of allocation plans that show the trade-off
between coverage cost and deployment cost, i.e., a Pareto front of allocations.
This plot shows the solution sets obtained by NSGA-ii [10] with population size
20, NSGA-ii with population size 50, and our generator, all evaluated on the same
test terrain. Here, our generator performs similarly to NSGA-ii of population size
50 and outperforms NSGA-ii of population size 20, with an average runtime that
is significantly shorter. On the right, we also include two different allocation plans
from the generated solution set, which illustrate how the allocation plan varies
with the deployment cost.

equally useful observations). The ergodic metric is then defined as

E(x) =
∑
k

λk|F(C)−F(fi)|2, (6)

where F is the Fourier transform and λk are weights for each of the spectral
components (see [27] for details).

The goal of the local trajectory planner is to minimize the ergodic metric.
Intuitively, and disregarding the effect of the species weights wj , the ergodic
metric is minimized when the number of observations taken in any area of the
full region is proportional to the amount of information in that area. In this work,
we assume that the information is uniformly distributed over the entire region,
so, ideally, observations should be equally spaced. We used a model predictive
control policy similar to [28] to optimize the trajectories of the robots relative
to the ergodic metric.

5 Experiments

We test our algorithm by simulating multi-robot coverage on the DroneDeploy
real-world satellite image dataset [32]. The dataset contains 6888 satelite image

Large-scale Heterogeneous Multi-Robot Coverage 11

chips of 300x300 pixels, where each pixel has a corresponding terrain label. In
our experiment, each terrain label belongs to one of the following four categories:
[Water, Mountain, Plain, City].

The motion capability of a robot is quantified by its maximum velocity in
each terrain. Each robot takes 20 observations during an episode. These ob-
servations are given a “coverage weight” based on the species, with a higher
coverage weight indicating better sensing capabilities. We set our robot bank to
contain three different species of robots: aerial robots, ground robots and aquatic
robots. We hand-selected the max velocities and coverage weights of each species,
as summarized in Table 1. We conducted all training and testing on a desktop
computer with Ubuntu 18.04, Intel i7 eight-core processor at 1.9 GHz, and an
NVIDIA GTX 1070 graphics card. Our generative model for task allocation is
trained for 20 hours on i.i.d. satellite images sampled from the training dataset
before testing. Both the generator and the discriminator are optimized using
Adam optimizer [19] with a learning rate of 1e−5.

Table 1: In our experiment, each species of robot has different motion and sensing
capabilities. The maximum velocity of a robot is terrain-dependent while the
coverage weight is constant. This table shows the capabilities of each species of
robot.

Max velocity for different terrains (m/s)
Species Water Mountain Plain City Coverage Weight

Ground robot 0 20 40 50 20
Aerial robot 50 50 50 30 10

Aquatic robot 50 0 0 30 20

5.1 Coverage Comparison

We first focus on examining how decomposition and allocation methods affect
coverage performance. Specifically, we examine the performance of three variants:

– No Decomposition. Robots are randomly distributed across the entire search
and directly planned their trajectories as described in Sec. 4.

– Decomposition + Random Allocation. A decomposition step is first carried
out and then the robots are randomly grouped into teams and allocated to
each sub-region, as a baseline.

– Decomposition + Generative Allocation (ours). The robots are grouped into
teams based on the output of our trained generative model.

We present coverage performance under different deployment cost limits. In
this work, we assume for simplicity that each robot incurs a deployment cost of
1. Therefore, the total deployment cost corresponds to the number of robots de-
ployed. A higher deployment cost corresponds to more deployable robots, which

12 J. Hu et al.

naturally results in higher coverage performance. Notice that with generative
allocation, the allocation plans under different deployment cost limits are gen-
erated simultaneously as solutions on the same Pareto front, i.e., different parts
of the latent space input to the generator map to different Pareto-optimal solu-
tions for the same task. Visualizations of selected results can be seen in Fig. 3.
Quantitative results of the experiments are collected through evaluation on 100
test terrains, and are presented in Table 2.

We observe from the visualization that with No Decomposition, some of the
robots would get trapped in a undesirable local optima due to unfavorable ini-
tialization; while with Decomposition + Random Allocation, there tends to be
an uneven distribution of robots that leaves certain sub-regions relatively unex-
plored. As a result, both of them leave a considerable amount of area uncovered.
Our framework outperforms these other approaches in this setting, demonstrat-
ing the effectiveness of both the decomposition and the generative allocation.

Table 2: We studied the effect of decomposition and allocation on the coverage
performance under different deployment cost budgets. ↓ indicates that a lower
value is better, and ↑ that higher is better. RanA stands for Random Allocation,
GenA stands for Generative Allocation. Each value is averaged over 100 test
terrains. Our framework outperforms the other tested methods under all three
deployment cost limits, demonstrating the effectiveness of both the decomposi-
tion and the generative allocation.

Coverage Cost (×10−2) ↓
Methods Deploy Cost ≤ 15 Deploy Cost ≤ 30 Deploy Cost ≤ 45

No Decomposition 0.365± 0.076 0.153± 0.035 0.056± 0.037

Dec + RanA 0.732± 0.231 0.401± 0.144 0.062± 0.015

Dec + GenA (ours) 0.049± 0.006 0.018± 0.004 0.007± 0.001

5.2 Pareto front Comparison

Traditional multi-objective optimization approaches such as multi-objective ge-
netic algorithms do not fit our problem statement needs due to their high com-
putational cost. Nevertheless, they can be used as a benchmark for evaluating
the quality of the Pareto front solutions generated by our generative model.
The goal of this experiment is to determine whether generative allocation can
produce allocations that match or surpass traditional centralized task allocation
approaches, while reducing computational expense at run-time. We therefore
provide additional comparison between the generative allocation and NSGA-ii
[10], a well-known fast sorting and elite multi-objective evolutionary algorithm
[42]. Our implementation of NSGA-ii used single-point arithmetic crossover with
a crossover probability of 0.5 and uniform mutation with a mutation rate of 0.1.

Large-scale Heterogeneous Multi-Robot Coverage 13

The maximum number of iterations is set to be 50, where NSGA-ii:20 has a
population size of 20, and NSGA-ii:50 has a population size of 50.

We numerically evaluate the Pareto fronts discovered by the tested algo-
rithms on hypervolume [43], a common set-quality indicators for stochastic multi-
objective optimizers [22]. The hypervolume set-quality indicator maps a point
set in Rd to the measure of the region dominated by that set and bounded above
by a given reference point, also in Rd, where d is the number of objectives.
As is visually evident, a larger hypervolume is better. In our experiment, we
used (0.25, 60) as the reference point. we additionally report average runtime,
which measures the wall time of each algorithm during execution in minutes, to
demonstrate the computational efficiency of our algorithm.

Quantitative results of the experiments are presented in Table 3, where each
entry is averaged over five independent runs. A visualization of the Pareto fronts
discovered by the tested algorithms for a specific terrain and the corresponding
solutions can be seen in Fig. 4. Compared to NSGA-ii, our trained generator is
able to generate comparably effective allocations more efficiently, since its exe-
cution only consist of a neural network forward pass. It is important to note that
our execution efficiency comes at the cost of the training time, which NSGA-ii do
not require. However, the training takes place before the generator is deployed,
and need only be trained once before being used for many tasks. Also note that
NSGA-ii solution quality tends to improve solutions given larger population sizes
and more iterations, but its time cost scales proportionally.

Table 3: Performance comparison between tested algorithms. ↓ indicates that
lower measures are better, ↑ that higher are better. NSGA-ii:20 and NSGA-ii:50
[10] have a population size of 20 and 50 respectively. Compared to evolutionary
algorithms, our generative allocation (GenA) method produces allocations of
similar quality with significantly faster runtime, making it suitable for time-
critical deployment.

Methods Hypervolume ↑ Avg. runtime (min.) ↓
NSGA-ii:20 9.4± 1.0 43.1± 0.6

NSGA-ii:50 11.9± 1.5 107.6± 0.9

GenA (ours) 11.8± 0.8 0.02

6 Conclusion

In this work, we proposed a framework that uses domain decomposition and
generative allocation to efficiently solve large-scale heterogeneous multi-robot
coverage problems. Our framework decomposes a large coverage problem into
smaller sub-problems, which allows us to coordinate the teams distributively

14 J. Hu et al.

while still considering the global distribution of terrain and information. To de-
termine the team formation in a computationally efficient manner, we introduce
a novel generative allocation algorithm which learns to generate suitable alloca-
tion plans for heterogeneous robots by taking advantage of correlations between
tasks. One limitation of our generative allocation algorithm, shared by other
machine learning methods, is the assumption that new tasks will be from the
same distribution as those seen during training, such that the outputs from out-
of-distribution tasks may be poor. Another limitation of our framework is the
need for a labelled terrain map, which may not always be available in real-world
applications.

There are several interesting future directions for this work. Firstly, our work
only uses a single decomposition and allocation step. Exploration of the possi-
bility of applying the decomposition and allocation in a recursive manner may
be beneficial to extend this framework to larger-scale applications. Secondly, we
only experiment with two objectives in our generative allocation. It would be
interesting to see if this algorithm will scale to higher dimensional objectives
spaces. Lastly, we do not explore how different decomposition objectives would
affect the coverage performance. It is possible that other decomposition objec-
tives may improve the full coverage achieved by the coalitions, and therefore
further analysis of the choice of decomposition would be valuable.

References

1. Abraham, I., Mavrommati, A., Murphey, T.: Data-driven measurement
models for active localization in sparse environments. In: Proceedings
of Robotics: Science and Systems. Pittsburgh, Pennsylvania (June 2018).
https://doi.org/10.15607/RSS.2018.XIV.045

2. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375 (2018)

3. Agarwal, M., Agrawal, N., Sharma, S., Vig, L., Kumar, N.: Parallel multi-objective
multi-robot coalition formation. Expert Systems with Applications 42(21), 7797–
7811 (2015)

4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: Int. conference on machine learning. pp. 214–223. PMLR (2017)

5. Ayvali, E., Ansari, A., Wang, L., Simaan, N., Choset, H.: Utility-guided palpation
for locating tissue abnormalities. IEEE Robotics and Automation Letters 2(2),
864–871 (2017)

6. Ayvali, E., Salman, H., Choset, H.: Ergodic coverage in constrained environments
using stochastic trajectory optimization. In: 2017 IEEE/RSJ Int. Conference on
Intelligent Robots and Systems (IROS). pp. 5204–5210. IEEE (2017)

7. Badreldin, M., Hussein, A., Khamis, A.: A comparative study between optimization
and market-based approaches to multi-robot task allocation. Advances in Artificial
Intelligence (16877470) (2013)

8. Casas, N.: Genetic algorithms for multimodal optimization: a review. arXiv
preprint arXiv:1508.05342 (2015)

9. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: A survey. ACM computing surveys (CSUR) 45(3), 1–33 (2013)

Large-scale Heterogeneous Multi-Robot Coverage 15

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation 6(2),
182–197 (2002)

11. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE computa-
tional intelligence magazine 1(4), 28–39 (2006)

12. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: Neural Information
Processing Systems (2014)

13. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. Advances in neural information processing systems
30 (2017)

14. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. PMLR (2015)

15. Kantaros, Y., Zavlanos, M.M.: Distributed communication-aware coverage control
by mobile sensor networks. Automatica 63, 209–220 (2016)

16. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,
present, and future. Multimedia Tools and Applications pp. 1–36 (2020)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95-international conference on neural networks. vol. 4, pp. 1942–1948. IEEE
(1995)

18. Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: A review of the
state-of-the-art. Cooperative Robots and Sensor Networks 2015 pp. 31–51 (2015)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot
task allocation. The Int. Journal of Robotics Research 32(12), 1495–1512 (2013)

21. Levina, E., Bickel, P.: The earth mover’s distance is the mallows distance: Some
insights from statistics. In: Proceedings Eighth IEEE Int. Conference on Computer
Vision. ICCV 2001. vol. 2, pp. 251–256. IEEE (2001)

22. Li, M., Chen, T., Yao, X.: How to evaluate solutions in pareto-
based search-based software engineering? a critical review and
methodological guidance. IEEE Transactions on Software Engi-
neering p. 1–1 (2020). https://doi.org/10.1109/tse.2020.3036108,
http://dx.doi.org/10.1109/TSE.2020.3036108

23. Liu, C., Kroll, A.: A centralized multi-robot task allocation for industrial plant
inspection by using a* and genetic algorithms. In: Int. Conference on Artificial
Intelligence and Soft Computing. pp. 466–474. Springer (2012)

24. Liu, H.Y., Chen, J.F.: Multi-robot cooperation coalition formation based on genetic
algorithm. In: 2006 Int. conference on machine learning and cybernetics. pp. 85–88.
IEEE (2006)

25. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.M., Lu, L., Yang, C.: On centroidal
voronoi tessellation—energy smoothness and fast computation. ACM Transactions
on Graphics (ToG) 28(4), 1–17 (2009)

26. López-González, A., Campaña, J.M., Martínez, E.H., Contro, P.P.: Multi robot
distance based formation using parallel genetic algorithm. Applied Soft Computing
86, 105929 (2020)

27. Mathew, G., Mezić, I.: Metrics for ergodicity and design of ergodic dynamics for
multi-agent systems. Physica D: Nonlinear Phenomena 240(4-5), 432–442 (2011)

16 J. Hu et al.

28. Mavrommati, A., Tzorakoleftherakis, E., Abraham, I., Murphey, T.D.: Real-time
area coverage and target localization using receding-horizon ergodic exploration.
IEEE Transactions on Robotics 34(1), 62–80 (2017)

29. Miller, L.M., Silverman, Y., MacIver, M.A., Murphey, T.D.: Ergodic exploration
of distributed information. IEEE Transactions on Robotics 32(1), 36–52 (2015)

30. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

31. Mouradian, C., Sahoo, J., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A coalition
formation algorithm for multi-robot task allocation in large-scale natural disasters.
In: 2017 13th Int. Wireless Communications and Mobile Computing Conference
(IWCMC). pp. 1909–1914. IEEE (2017)

32. Pilkington, N., Svetlichnaya, S., Holmes, T.: Github - dronedeploy/ddml-
segmentation-benchmark: Dronedeploy machine learning segmentation benchmark
(2019)

33. Price, K.V.: Differential evolution. In: Handbook of optimization, pp. 187–214.
Springer (2013)

34. Prorok, A., Hsieh, M.A., Kumar, V.: Fast redistribution of a swarm of heteroge-
neous robots. In: Proceedings of the 9th EAI Int. Conference on Bio-Inspired In-
formation and Communications Technologies (Formerly BIONETICS). p. 249–255.
BICT’15 (2016)

35. Rauniyar, A., Muhuri, P.K.: Multi-robot coalition formation and task allocation us-
ing immigrant based adaptive genetic algorithms. In: Computational Intelligence in
Emerging Technologies for Engineering Applications, pp. 205–225. Springer (2020)

36. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artificial intelligence 101(1-2), 165–200 (1998)

37. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: An-
alyzing the state-of-the-art. Evolutionary computation 8(2), 125–147 (2000)

38. Van Veldhuizen, D.A., Lamont, G.B., et al.: Evolutionary computation and con-
vergence to a pareto front. In: Late breaking papers at the genetic programming
1998 conference. pp. 221–228. Citeseer (1998)

39. Wang, J., Gu, Y., Li, X.: Multi-robot task allocation based on ant colony algorithm.
Journal of Computers 7(9), 2160–2167 (2012)

40. Wei, C., Ji, Z., Cai, B.: Particle swarm optimization for cooperative multi-robot
task allocation: a multi-objective approach. IEEE Robotics and Automation Let-
ters 5(2), 2530–2537 (2020)

41. Xu, B., Yang, Z., Ge, Y., Peng, Z.: Coalition formation in multi-agent systems
based on improved particle swarm optimization algorithm. Int. Journal of Hybrid
Information Technology 8(3), 1–8 (2015)

42. Yusoff, Y., Ngadiman, M.S., Zain, A.M.: Overview of nsga-ii for optimizing ma-
chining process parameters. Procedia Engineering 15, 3978–3983 (2011)

43. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE transactions on Evolutionary Com-
putation 3(4), 257–271 (1999)

